首先定义mex(minimal excludant)运算,这是施加于一个集合的运算,表示最小的不属于这个集合的非负整数。例如mex{0,1,2,4}=3、mex{2,3,5}=0、mex{}=0。
对于一个给定的有向无环图,定义关于图的每个顶点的Sprague-Grundy函数g如下:g(x)=mex{ g(y) | y是x的后继 },这里的g(x)即sg[x]
例如:取石子问题,有1堆n个的石子,每次只能取{1,3,4}个石子,先取完石子者胜利,那么各个数的SG值为多少?
sg[0]=0,f[]={1,3,4}, //我们可以将 f[] , 从小到大排序
x=1时,可以取走1-f{1}个石子,剩余{0}个,mex{sg[0]}={0},故sg[1]=1;
x=2时,可以取走2-f{1}个石子,剩余{1}个,mex{sg[1]}={1},故sg[2]=0;
x=3时,可以取走3-f{1,3}个石子,剩余{2,0}个,mex{sg[2],sg[0]}={0,0},故sg[3]=1;
x=4时,可以取走4-f{1,3,4}个石子,剩余{3,1,0}个,mex{sg[3],sg[1],sg[0]}={1,1,0},故sg[4]=2;
x=5时,可以取走5-f{1,3,4}个石子,剩余{4,2,1}个,mex{sg[4],sg[2],sg[1]}={2,0,1},故sg[5]=3;
注意:
f[]需要从小到大排序
1.可选步数为1~m的连续整数,直接取模即可,SG(x) = x % (m+1);
2.可选步数为任意步,SG(x) = x; , Nim问题
3.可选步数为一系列不连续的数,用GetSG()计算
模板1如下:
// SG打表, 利用动态规划
int f[N],sg[N]; void getSG(int x) { sg[0]=0; for(int i=1; i<=x ; i++) // 这个x 是所有要用到的x 的最大值 { set<int>S; // 集合中无重复的元素, 且元素是按从小到大排序 for(int j=0 ; f[j]<= i; j++) // f[]数组 的下标是 从0开始的 S.insert(sg[i-f[j]]); int g=0; while(S.count(g) != 0) g++; sg[i] = g; } }
模板2如下:(dfs)
sg[1]
=mex{sg[0]} = mex{0} sg[1] =1
sg[2]
= mex{sg[1]} = mex{1} sg[2] = 0
sg[3]
= mex{sg[2], sg[0]} = mex{0, 0} = 1
sg[4]
= mex{sg[3], sg[1], sg[0]} = mex{1, 1, 0} sg[4] = 2
sg[5]
= mex{sg[4], sg[2], sg[1]} = mex{2, 0, 1} sg[5] = 3
代码如下:
//注意 f数组要按从小到大排序
//SG函数要初始化为-1 对于每个集合只需初始化1遍
//n是集合f的大小
f[i]是定义的特殊取法规则的数组
int f[N_f],vis[N_f]; int sg[N_x],n; int SG_dfs(int x) { int i; if(sg[x]!=-1) return sg[x]; memset(vis,0,sizeof(vis)); for(i=0;i<n;i++) // n是集合f[]的大小 { if(x>=f[i]) { SG_dfs(x-f[i]); vis[sg[x-f[i]]]=1; } } int e; for(i=0;;i++) if(!vis[i]) { e=i; break; } return sg[x]=e; }
原文:http://www.cnblogs.com/zn505119020/p/3608051.html