2 3 3 3 4
1/3 4/27
题意:M个小伙伴分蛋糕,有N个草莓随机分布在蛋糕上,你去把蛋糕平均切,并优先选择一块,问你能拿到所有草莓的概率。
思路:以最外面的一个草莓为第一刀为切的位置,这样一共有N种开刀位置,然后剩下N-1个草莓,每个的概率为1/M.如此以来概率为N / M ^ (N - 1); 要使用高精度,并且化简输出。
代码:
#include <stdio.h>
#include <string.h>
#include <iostream>
using namespace std;
const int N = 1005;
struct bign {
int len, sex;
int s[N];
bign() {
this -> len = 1;
this -> sex = 0;
memset(s, 0, sizeof(s));
}
bign operator = (const char *number) {
int begin = 0;
len = 0;
sex = 1;
if (number[begin] == ‘-‘) {
sex = -1;
begin++;
}
else if (number[begin] == ‘+‘)
begin++;
for (int j = begin; number[j]; j++)
s[len++] = number[j] - ‘0‘;
return *this;
}
bign operator = (int number) {
char string[N];
sprintf(string, "%d", number);
*this = string;
return *this;
}
bign (int number) {*this = number;}
bign (const char* number) {*this = number;}
bign change(bign cur) {
bign now;
now = cur;
for (int i = 0; i < cur.len; i++)
now.s[i] = cur.s[cur.len - i - 1];
return now;
}
void delZore() { // 删除前导0.
bign now = change(*this);
while (now.s[now.len - 1] == 0 && now.len > 1) {
now.len--;
}
*this = change(now);
}
void put() { // 输出数值。
delZore();
if (sex < 0 && (len != 1 || s[0] != 0))
cout << "-";
for (int i = 0; i < len; i++)
cout << s[i];
}
bign operator * (const bign &cur){
bign sum, a, b;
sum.len = 0;
a = a.change(*this);
b = b.change(cur);
for (int i = 0; i < a.len; i++){
int g = 0;
for (int j = 0; j < b.len; j++){
int x = a.s[i] * b.s[j] + g + sum.s[i + j];
sum.s[i + j] = x % 10;
g = x / 10;
}
sum.len = i + b.len;
while (g){
sum.s[sum.len++] = g % 10;
g = g / 10;
}
}
return sum.change(sum);
}
bign operator / (int k) { // 高精度求商低精度。
bign sum;
sum.len = 0;
int num = 0;
for (int i = 0; i < len; i++) {
num = num * 10 + s[i];
sum.s[sum.len++] = num / k;
num = num % k;
}
return sum;
}
int operator % (int k){
int sum = 0;
for (int i = 0; i < len; i++){
sum = sum * 10 + s[i];
sum = sum % k;
}
return sum;
}
bool operator < (const bign& b) const {
if (len != b.len)
return len < b.len;
for (int i = 0; i < len; i++)
if (s[i] != b.s[i])
return s[i] < b.s[i];
return false;
}
bool operator > (const bign& b) const { return b < *this; }
bool operator <= (const bign& b) const { return !(b < *this); }
bool operator >= (const bign& b) const { return !(*this < b); }
bool operator != (const bign& b) const { return b < *this || *this < b;}
bool operator == (const bign& b) const { return !(b != *this); }
};
int t, n, M;
bign zero = 0;
int main () {
scanf("%d", &t);
while (t--) {
scanf("%d%d", &M, &n);
bign m = M;
bign ans = 1;
for (int i = 1; i < n; i++)
ans = ans * m;
for (int i = n; i >= 2; i--) {
if (n % i == 0 && ans % i == 0) {
n /= i;
ans = ans / i;
}
if (n == 1) break;
}
printf("%d/", n);
ans.put();
printf("\n");
}
return 0;
}HDU 4762 Cut the Cake(概率+推理+高精度),布布扣,bubuko.com
HDU 4762 Cut the Cake(概率+推理+高精度)
原文:http://blog.csdn.net/accelerator_/article/details/20863155