You are given an array, divide it into 2 equal halves such that the sum of those 2 halves are equal. (Imagine that such division is possible for the input array and array size is even)
--------------------------------------------------------------------
I‘ve met similar problem before :
Partition a set of numbers
into two such that difference between their sum is minimum, and both sets have equal number of elements.
In the past blog, DP[i][j] is defined whether a subset with size i could sum to j. However, a subset with size i is lengthy compared to the first i sub sequence. So the code could be written as :
#include <iostream> #include <vector> #include <algorithm> #include <climits> #include <cmath> using namespace std; int BalancedPartition(vector<int> v) { int n = v.size(); int sum = 0; for (int i = 0; i < v.size(); ++i) sum += v[i]; int max_sum=sum/2,diff=INT_MAX; //int *s = new int[sum+1]; //vector<int> s(sum + 1, 0); vector<vector<int>> s(n + 1, vector<int>(sum + 1,0)); s[0][0] = 1; //for(int i=1; i<=sum; i++) s[i] = 0; for(int i=1; i<=n; i++) { for(int j = sum/2; j>=0; j--) { if(s[i-1][j]) { s[i][j + v[i - 1]]=s[i - 1][j] + 1; s[i][j] = s[i - 1][j]; } } } for(int j = sum/2; j>=1; j--) if(s[n][j]) { return abs(sum-2*j); } } int main() { int value[] = {12,5,7,3}; int n = sizeof(value)/sizeof(value[0]); vector<int> v(value,value+n); cout<<BalancedPartition(v); return 0; }
Similar to Knapsack problem, 2-d array could be changed into 1-d like this:
#include <iostream> #include <vector> #include <algorithm> #include <climits> #include <cmath> using namespace std; int BalancedPartition(vector<int> v) { int n = v.size(); int sum = 0; for (int i = 0; i < v.size(); ++i) sum += v[i]; int max_sum=sum/2,diff=INT_MAX; //int *s = new int[sum+1]; vector<int> s(sum + 1, 0); //vector<vector<int>> s(n + 1, vector<int>(sum + 1,0)); s[0] = 1; //for(int i=1; i<=sum; i++) s[i] = 0; for(int i=1; i<=n; i++) { for(int j = sum/2; j>=0; j--) { //s[i][j] += s[i - 1][j]; if (j >= v[i - 1] && s[j - v[i - 1]]) s[j] += 1; } } for(int j = sum/2; j>=1; j--) if(s[j]) { return abs(sum-2*j); } } int main() { int value[] = {1,1,1,2,2,2,1,2}; int n = sizeof(value)/sizeof(value[0]); vector<int> v(value,value+n); cout<<BalancedPartition(v); return 0; }
Recursive Solution
Following is the recursive property of the second step mentioned above.
Let isSubsetSum(arr, n, sum/2) be the function that returns true if there is a subset of arr[0..n-1] with sum equal to sum/2 The isSubsetSum problem can be divided into two subproblems a) isSubsetSum() without considering last element (reducing n to n-1) b) isSubsetSum considering the last element (reducing sum/2 by arr[n-1] and n to n-1) If any of the above the above subproblems return true, then return true. isSubsetSum (arr, n, sum/2) = isSubsetSum (arr, n-1, sum/2) || isSubsetSum (arr, n-1, sum/2 - arr[n-1])
//
A recursive solution for partition problem #include <stdio.h> // A utility function that returns true if there is a subset of arr[] // with sun equal to given sum boolisSubsetSum (intarr[], intn, intsum) { // Base Cases if(sum == 0) returntrue; if(n == 0 && sum != 0) returnfalse; // If last element is greater than sum, then ignore it if(arr[n-1] > sum) returnisSubsetSum (arr, n-1, sum); /* else, check if sum can be obtained by any of the following (a) including the last element (b) excluding the last element */ returnisSubsetSum (arr, n-1, sum) || isSubsetSum (arr, n-1, sum-arr[n-1]); } // Returns true if arr[] can be partitioned in two subsets of // equal sum, otherwise false boolfindPartiion (intarr[], intn) { // Calculate sum of the elements in array intsum = 0; for(inti = 0; i < n; i++) sum += arr[i]; // If sum is odd, there cannot be two subsets with equal sum if(sum%2 != 0) returnfalse; // Find if there is subset with sum equal to half of total sum returnisSubsetSum (arr, n, sum/2); } // Driver program to test above function intmain() { intarr[] = {3, 1, 5, 9, 12}; intn = sizeof(arr)/sizeof(arr[0]); if(findPartiion(arr, n) == true) printf("Can be divided into two subsets of equal sum"); else printf("Can not be divided into two subsets of equal sum"); getchar(); return0; } |
Time Complexity: O(2^n) In worst case, this solution tries two possibilities (whether to include or exclude) for every element.
Balanced Partition,布布扣,bubuko.com
原文:http://blog.csdn.net/taoqick/article/details/20243765