二叉树的遍历方法有先序中序后序三种方法,先以下图为例解释三种遍历顺序:
所谓的先后中都是以父节点为中心出发的,即
先序为:父节点、左子节点、右子节点;(父节点第一个)
中序为:左子节点、父节点、右子节点;(父节点放中间,第二个)
后序为:左子节点、右子节点、父节点;(父节点最后一个)
以上图为例,
先序遍历顺序为:GDAFEMHZ
中序遍历顺序为:ADEFGHMZ
后序遍历顺序为:AEFDHZMG
在此三种遍历顺序的基础上,已知中序和另外一种遍历即可获取第三种遍历顺序,即中序遍历+任意一种遍历顺序确定一棵二叉树。
已知先序中序
先序遍历第一个总是根节点,中序遍历根节点总在左子树和右子树中间。因此,先序的第一个数就是根节点,然后在中序中找到该根节点,左边为左子树,右边为右子树。接着再分别拿左子树右子树来判断后续,原理同上。
找到一个算法:
#include <iostream> #include <fstream> #include <string> struct TreeNode { struct TreeNode* left; struct TreeNode* right; char elem; }; void BinaryTreeFromOrderings(char* inorder, char* preorder, int length) { if(length == 0) { //cout<<"invalid length"; return; } TreeNode* node = new TreeNode;//Noice that [new] should be written out. node->elem = *preorder; int rootIndex = 0; for(;rootIndex < length; rootIndex++) { if(inorder[rootIndex] == *preorder) break; } //Left BinaryTreeFromOrderings(inorder, preorder +1, rootIndex); //Right BinaryTreeFromOrderings(inorder + rootIndex + 1, preorder + rootIndex + 1, length - (rootIndex + 1)); cout<<node->elem<<endl; return; } int main(int argc, char* argv[]) { char* pr="GDAFEMHZ"; char* in="ADEFGHMZ"; BinaryTreeFromOrderings(in, pr, 8); printf("\n"); return 0; }
已知后序中序
后序遍历最后一个数总是根节点,中序遍历根节点总在左子树和右子树中间。因此,后序的最后一个数就是根节点,然后在中序中找到该数,左边为左子树,右边为右子树。接着再分别拿左子树和右子树按上述方法遍历。
算法如下:
#include <iostream> #include <fstream> #include <string> struct TreeNode { struct TreeNode* left; struct TreeNode* right; char elem; }; TreeNode* BinaryTreeFromOrderings(char* inorder, char* aftorder, int length) { if(length == 0) { return NULL; } TreeNode* node = new TreeNode;//Noice that [new] should be written out. node->elem = *(aftorder+length-1); std::cout<<node->elem<<std::endl; int rootIndex = 0; for(;rootIndex < length; rootIndex++)//a variation of the loop { if(inorder[rootIndex] == *(aftorder+length-1)) break; } node->left = BinaryTreeFromOrderings(inorder, aftorder , rootIndex); node->right = BinaryTreeFromOrderings(inorder + rootIndex + 1, aftorder + rootIndex , length - (rootIndex + 1)); return node; } int main(int argc, char** argv) { char* af="AEFDHZMG"; char* in="ADEFGHMZ"; BinaryTreeFromOrderings(in, af, 8); printf("\n"); return 0; }
注意,已知先序和后序不能唯一确定该二叉树,即不能求出中序遍历顺序。
原文:http://blog.csdn.net/fengzhongzhishenfu/article/details/24261225