简单的区间DP。。。
Time Limit: 1000MS | Memory Limit: 65536K | |
Total Submissions: 2518 | Accepted: 1300 |
Description
We give the following inductive definition of a “regular brackets” sequence:
For instance, all of the following character sequences are regular brackets sequences:
(), [], (()), ()[], ()[()]
while the following character sequences are not:
(, ], )(, ([)], ([(]
Given a brackets sequence of characters a1a2 … an, your goal is to find the length of the longest regular brackets sequence that is a subsequence of s. That is, you wish to find the largest m such that for indices i1, i2, …, im where 1 ≤ i1 < i2 < … < im ≤ n, ai1ai2 … aim is a regular brackets sequence.
Given the initial sequence ([([]])]
, the longest regular brackets subsequence is [([])]
.
Input
The input test file will contain multiple test cases. Each input test case consists of a single line containing only the characters (
, )
, [
, and ]
; each input test will have length between 1 and 100, inclusive.
The end-of-file is marked by a line containing the word “end” and should not be processed.
Output
For each input case, the program should print the length of the longest possible regular brackets subsequence on a single line.
Sample Input
((())) ()()() ([]]) )[)( ([][][) end
Sample Output
6 6 4 0 6
Source
#include <iostream> #include <cstring> #include <cstdio> #include <algorithm> using namespace std; char str[220]; int dp[220][220]; int main() { while(scanf("%s",str)!=EOF) { if(str[0]==‘e‘&&str[1]==‘n‘&&str[2]==‘d‘) break; int n=strlen(str); memset(dp,0,sizeof(dp)); for(int len=2;len<=n;len++) { for(int i=0;i+len-1<n;i++) { int j=i+len-1; if((str[i]==‘(‘&&str[j]==‘)‘)||(str[i]==‘[‘&&str[j]==‘]‘)) { dp[i][j]=dp[i+1][j-1]+1; } dp[i][j]=max(max(dp[i+1][j],dp[i][j-1]),dp[i][j]); for(int k=i;k<=j;k++) dp[i][j]=max(dp[i][k]+dp[k+1][j],dp[i][j]); } } printf("%d\n",2*dp[0][n-1]); } return 0; }
POJ 2955 Brackets,布布扣,bubuko.com
原文:http://blog.csdn.net/ck_boss/article/details/22943925