首页 > 其他 > 详细

hdu 1323 Perfection

时间:2015-07-24 22:36:31      阅读:291      评论:0      收藏:0      [点我收藏+]

Perfection

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 2027    Accepted Submission(s): 1213


Problem Description
From the article Number Theory in the 1994 Microsoft Encarta: "If a, b, c are integers such that a = bc, a is called a multiple of b or of c, and b or c is called a divisor or factor of a. If c is not 1/-1, b is called a proper divisor of a. Even integers, which include 0, are multiples of 2, for example, -4, 0, 2, 10; an odd integer is an integer that is not even, for example, -5, 1, 3, 9. A perfect number is a positive integer that is equal to the sum of all its positive, proper divisors; for example, 6, which equals 1 + 2 + 3, and 28, which equals 1 + 2 + 4 + 7 + 14, are perfect numbers. A positive number that is not perfect is imperfect and is deficient or abundant according to whether the sum of its positive, proper divisors is smaller or larger than the number itself. Thus, 9, with proper divisors 1, 3, is deficient; 12, with proper divisors 1, 2, 3, 4, 6, is abundant."
Given a number, determine if it is perfect, abundant, or deficient.
 

Input
A list of N positive integers (none greater than 60,000), with 1 < N < 100. A 0 will mark the end of the list.
 

Output
The first line of output should read PERFECTION OUTPUT. The next N lines of output should list for each input integer whether it is perfect, deficient, or abundant, as shown in the example below. Format counts: the echoed integers should be right justified within the first 5 spaces of the output line, followed by two blank spaces, followed by the description of the integer. The final line of output should read END OF OUTPUT.
 

Sample Input
15 28 6 56 60000 22 496 0
 

Sample Output
PERFECTION OUTPUT 15 DEFICIENT 28 PERFECT 6 PERFECT 56 ABUNDANT 60000 ABUNDANT 22 DEFICIENT 496 PERFECT

END OF OUTPUT

求一个数的所有真因子的和与这个数比大小,, 2015,7,24

#include<stdio.h>
int f(int n)
{
	int sum=0;
	for(int i=2;i<=n/2;i++)
	{
		if(n%i==0)
			sum+=i;
		if(sum>n) break;
	}
	if(sum+1>n) return 2;//开始忘加1了,,,找了半天错,擦擦擦 
	else if(sum+1==n) return 1;
    else return 0;
 }
 int main()
 {
 	int m,i,k=0;
 	int a[60005];
 	while(scanf("%d",&m),m)
 	{
 		a[k++]=m;
	 }
	 printf("PERFECTION OUTPUT\n");
	 for(i=0;i<k;i++)
	 {
	 	if(f(a[i])==1) printf("%5d  PERFECT\n",a[i]);
	 	else if(f(a[i])==0) printf("%5d  DEFICIENT\n",a[i]);
	 	else printf("%5d  ABUNDANT\n",a[i]);
	 }
	 printf("END OF OUTPUT\n");
	 return 0;
  } 


hdu 1323 Perfection

原文:http://blog.csdn.net/ling_du/article/details/47048237

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!