首页 > 其他 > 详细

【HNOI】 lct tree-dp

时间:2014-03-26 21:32:11      阅读:530      评论:0      收藏:0      [点我收藏+]

  【题目描述】给定2-3颗树,每个边的边权为1,解决以下独立的问题。

    现在通过连接若干遍使得图为连通图,并且Σdis(x,y)最大,x,y只算一次。

    每个点为黑点或者白点,现在需要删除一些边,使得图中的黑点度数为奇数,白点为偶数,要求删除的边最多。

  【数据范围】 100% n<=10^5

  首先我们来解决第一问,因为每加一条边就可能使得若干点到其他点的距离变小,那么我们需要加尽量少的边来使得图连通。

  设dis_[x]为x在x所在子树中,x到其他所有点的距离,这个我们可以通过设dis[x]表示x到x子树中所有点的距离和来由父节点转移得到。

  那么答案可以分为两部分,分别为树中的点对距离和跨树的点对距离,前一个问题比较容易,可以通过dis_[x]或者计算每条边被经过的次数来求出。

  那么对于两颗树的情况,我们就需要连接这两棵树中dis值最大的两个点,假设为x,y。这样答案就是      dis[x]*size[tree_y]+dis[y]*size[tree_x]+size[tree_x]*size[tree_y],这个由连接的那条边的被经过次数可以得出。

  那么现在考虑三棵树的情况,我们需要枚举中间的树,这样左右两棵树肯定连接dis最大的点,中间的连接的则不确定,我们可以列出来整个答案的表达式,设左面的树和中间的树通过x,y点连通,中间的点和右面的树通过u,v点连接,设三棵树的size为size[1],size[2],size[3],y与u点的距离为d[y][u],那么答案就是size[1]*dis_[y]+size[2]*dis_[x]+size[1]*size[2]+size[3]*dis_[u]+size[2]*dis_[v]+size[1]*dis_[v]+size[3]*dis_[u]+size[1]*size[3]*(d[y][u]+2)

  我们可以发现,这个中与y,u点有关的式子可以写成a*dis_[y]+b*dis_[u]+c*d[u][v]的形式,其中a,b,c为常数,那么对于这个我们就可以用tree-dp搞出来,记录点x的子树中dis_[p]+(d[x][p]+1)*c的最大值,然后不断的更新答案就可以了。

  第二问比较简单,我们可以贪心的来想,对于一棵树,我们从叶子节点开始,因为叶子节点的度数为1,那么我们只需要判断叶子节点的颜色,就可以判断这个点和其父节点的边是否可以删掉。

  反思:开始写tree-dp维护中间树的值的时候没有考虑到一些特殊情况,比如连接的y,u点其中一点是另一点的祖先,还有开始觉得如果中间的树选择两个点肯定不能是同一点,所以边界就处理的不是特别好,但是可能会有某些点单独构成树,这样的话就必须连接同一个点。第二问还是比较容易写的。

bubuko.com,布布扣
//By BLADEVIL
#include <cstdio>
#include <cstring>
#include <algorithm>
#define maxn 100010

using namespace std;

int n,m,l;
int a[maxn],pre[maxn<<1],other[maxn<<1],last[maxn],col[maxn],rot[4],num[maxn<<1],flag[maxn];
int dis_[maxn],dis[maxn],size[maxn],ans[maxn],ANS[4],max_a[maxn],max_b[maxn],cnt[maxn];

void connect(int x,int y,int z) {
    pre[++l]=last[x];
    last[x]=l;
    other[l]=y;
    num[l]=z;
}

void paint(int x,int fa,int c) {
    col[x]=c;
    for (int p=last[x];p;p=pre[p]) {
        if (other[p]==fa) continue;
        paint(other[p],x,c);
    }
}

void make_dis(int x,int fa) {
    dis[x]=0; size[x]=1;
    for (int p=last[x];p;p=pre[p]) {
        if (other[p]==fa) continue;
        make_dis(other[p],x);
        dis[x]+=dis[other[p]]+size[other[p]];
        size[x]+=size[other[p]];
    }
}

void make_dis_(int x,int fa,int s) {
    if (fa!=-1) dis_[x]=dis_[fa]-size[x]-dis[x]+s-size[x]+dis[x]; else dis_[x]=dis[x];
    for (int p=last[x];p;p=pre[p]) {
        if (other[p]==fa) continue;
        make_dis_(other[p],x,s);
    }
}

void calc(int x,int fa,int s) {
    for (int p=last[x];p;p=pre[p]) {
        if (other[p]==fa) continue;
        ANS[col[x]]+=size[other[p]]*(s-size[other[p]]);
        calc(other[p],x,s);
    }
}

void dp(int x,int fa,int a,int b,int c,int &Ans) {
    max_a[x]=dis_[x]*a+c; max_b[x]=dis_[x]*b+c;
    for (int p=last[x];p;p=pre[p]) {
        if (other[p]==fa) continue;
        dp(other[p],x,a,b,c,Ans);
        max_a[x]=max(max_a[x],max_a[other[p]]+c);
        max_b[x]=max(max_b[x],max_b[other[p]]+c);
    }
    int aa=0,bb=0;
    //printf("%d %d\n",max_a[x],max_b[x]);
    for (int p=last[x];p;p=pre[p]) {
        if (other[p]==fa) continue;
        Ans=max(Ans,max_a[x]+c+dis_[x]*b);
        Ans=max(Ans,max_b[x]+c+dis_[x]*a);
    }
    //printf("%d %d\n",x,Ans);
    for (int p=last[x];p;p=pre[p]) {
        if (other[p]==fa) continue;
        if (max_a[other[p]]>max_a[aa]) aa=other[p];
        if (max_b[other[p]]>max_b[bb]) bb=other[p];
    }
    //printf("%d %d\n",x,Ans);
    for (int p=last[x];p;p=pre[p]) {
        if (other[p]==fa) continue;
        if (other[p]!=aa) Ans=max(Ans,max_a[aa]+max_b[other[p]]+(c<<1));
        //printf("%d %d %d %d\n",Ans,max_a[aa],max_b[other[p]],c<<1);
        if (other[p]!=bb) Ans=max(Ans,max_b[bb]+max_a[other[p]]+(c<<1));
    }
    //printf("%d %d\n",aa,max_a[aa]);
    //printf("%d %d\n",x,Ans);
}

int work(int le,int x,int ri) {
    int a=size[le],b=size[ri],c=size[le]*size[ri],ans=0;
    int cur[4]; cur[1]=cur[2]=cur[3]=0;
    for (int i=1;i<=n;i++) cur[col[i]]=max(cur[col[i]],dis_[i]);
    //printf("fuck %d %d\n",col[le],col[ri]);
    ans=cur[col[le]]*size[x]+a*size[x]+cur[col[ri]]*size[x]+size[x]*b+a*cur[col[ri]]+b*cur[col[le]];
    //printf("fuck\n");
    memset(max_a,0,sizeof max_a);
    memset(max_b,0,sizeof max_b);
    int Ans=-1;
    dp(x,-1,a,b,c,Ans);
    Ans=max(Ans,c<<1);
    //printf("%d %d\n",ans,Ans);
    ans+=Ans;
    //printf("%d\n",ans);
    return ans;
}

void Work(int x,int fa) {
    for (int p=last[x];p;p=pre[p]) {
        if (other[p]==fa) continue;
        Work(other[p],x);
    }
    //printf("%d %d %d\n",x,a[x],cnt[x]);
    if (a[x]^cnt[x]) {
        for (int p=last[x];p;p=pre[p]) 
            if (other[p]==fa) flag[num[p]]=1;
        cnt[fa]^=1;
    };
}

int main() {
    freopen("lct.in","r",stdin); freopen("lct.out","w",stdout);
    scanf("%d %d\n",&n,&m);
    char c;
    for (int i=1;i<=n;i++) scanf("%c",&c),a[i]=(c==B)?1:0;
    for (int i=1;i<=m;i++) {
        int x,y;
        scanf("%d%d",&x,&y);
        connect(x,y,i); connect(y,x,i);
    }
    int sum=0;
    for (int i=1;i<=n;i++) if (!col[i]) paint(i,-1,++sum),rot[sum]=i;
    for (int i=1;i<=3;i++) if (rot[i]) make_dis(rot[i],-1),make_dis_(rot[i],-1,size[rot[i]]);
    for (int i=1;i<=3;i++) if (rot[i]) calc(rot[i],-1,size[rot[i]]);
    //for (int i=1;i<=n;i++) printf("%d ",col[i]); printf("\n");
    //printf("%d %d %d\n",rot[1],rot[2],rot[3]);
    //for (int i=1;i<=n;i++) printf("%d %d %d %d\n",i,dis[i],dis_[i],size[i]);
    //for (int i=1;i<=3;i++) printf("%d ",ANS[i]); printf("\n");
    if (sum==2) {
        int cur[3];
        cur[1]=cur[2]=0;
        for (int i=1;i<=n;i++) cur[col[i]]=max(cur[col[i]],dis_[i]);
        int Ans=ANS[1]+ANS[2]+cur[1]*size[rot[2]]+cur[2]*size[rot[1]]+size[rot[1]]*size[rot[2]];
        printf("%d\n",Ans);
        //printf("%d %d\n",cur[1],cur[2]);
        //printf("%d %d\n",size[rot[1]],size[rot[2]]);
        //printf("%d %d\n",ANS[1],ANS[2]);
    } else {
        int Ans=0;
        Ans=max(Ans,work(rot[2],rot[1],rot[3]));
        Ans=max(Ans,work(rot[1],rot[2],rot[3]));
        Ans=max(Ans,work(rot[1],rot[3],rot[2]));
        //printf("%d\n",Ans);
        Ans+=ANS[1]+ANS[2]+ANS[3];
        printf("%d\n",Ans);
    }
    for (int i=1;i<=n;i++) 
        for (int p=last[i];p;p=pre[p]) cnt[other[p]]++,cnt[i]++;
    //for (int i=1;i<=n;i++) printf("%d\n",cnt[i]);
    //for (int i=1;i<=n;i++) printf("%d\n",a[i]);
    for (int i=1;i<=n;i++) cnt[i]/=2,cnt[i]%=2;
    for (int i=1;i<=3;i++) Work(rot[i],-1);
    int ans_=0;
    for (int i=1;i<=m;i++) if (!flag[i]) ans_++;
    printf("%d\n",ans_);
    for (int i=1;i<=m;i++) if (!flag[i]) printf("%d ",i); printf("\n");
    fclose(stdin); fclose(stdout);
    return 0;
}
bubuko.com,布布扣

【HNOI】 lct tree-dp,布布扣,bubuko.com

【HNOI】 lct tree-dp

原文:http://www.cnblogs.com/BLADEVIL/p/3625012.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!