首页 > 其他 > 详细

[LeetCode] Lowest Common Ancestor of a Binary Search Tree

时间:2015-07-12 15:33:52      阅读:193      评论:0      收藏:0      [点我收藏+]

Given a binary search tree (BST), find the lowest common ancestor (LCA) of two given nodes in the BST.

According to the definition of LCA on Wikipedia: “The lowest common ancestor is defined between two nodes v and w as the lowest node in T that has both v and w as descendants (where we allow a node to be a descendant of itself).”

        _______6______
       /                  ___2__          ___8__
   /      \        /         0      _4       7       9
         /           3   5

For example, the lowest common ancestor (LCA) of nodes 2 and 8 is 6. Another example is LCA of nodes 2 and 4 is 2, since a node can be a descendant of itself according to the LCA definition.

做这道题,首先得了解二叉排序树的性质,然后就是利用队列去记录寻找到q或者p的路径,然后对路径进行遍历,找到分叉点,这个分叉点就是要找的点。

    public void findPath(TreeNode root, TreeNode p,Queue<TreeNode> queue)
    {
        TreeNode temp=root;
        while(temp!=null && temp.val!=p.val)
        {
            queue.offer(temp);
            if(temp.val>p.val) temp=temp.left;
            else temp=temp.right;
        }
        queue.add(p);
    }
    public TreeNode lowestCommonAncestor(TreeNode root, TreeNode p, TreeNode q) {
        Queue<TreeNode> pQ=new LinkedList<TreeNode>();
        Queue<TreeNode> qQ=new LinkedList<TreeNode>();
        findPath(root, p, pQ);
        findPath(root, q, qQ);
        TreeNode x1=null;
        TreeNode x2=null;
        TreeNode anc=null;
        while(!pQ.isEmpty() && !qQ.isEmpty())
        {
            x1=pQ.poll();
            x2=qQ.poll();
            if(x1.val==x2.val)
            {
                anc=x1;
            }
            else
            {
                break;
            }
        }
        return anc;
    }

 

[LeetCode] Lowest Common Ancestor of a Binary Search Tree

原文:http://www.cnblogs.com/maydow/p/4640941.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!