首页 > 其他 > 详细

matlab学习笔记第七章——常微分方程(ODE)的数值解

时间:2015-06-24 18:39:08      阅读:261      评论:0      收藏:0      [点我收藏+]

  1.我们通过调用ODE32函数来求解ODE:

    [t,y] = ode23(‘func_name‘, [start_time, end_time], y(0))

  ode45函数使用更高阶的Runge-Kutta公式。

  首先我们定义函数,我们创建一个.m文件,输入下面的内容。

  function ydot = eq1(t,y)
  ydot = cos(t);

  调用的语句是:

    >> [t,y] = ode23(‘eq1‘,[0 2*pi],2);

    >> f = 2 + sin(t);

    >> plot(t,y,‘o‘,t,f),xlabel(‘t‘),ylabel(‘y(t)‘),axis([0 2*pi 0 4])

    >> err = zeros(size(y));

  现在我们使用for循环遍历数据,计算每个点上的相对误差:

    >> for i = 1:1:size(y)
      err(i) = abs((f(i)-y(i))/f(i));
      end

matlab学习笔记第七章——常微分方程(ODE)的数值解

原文:http://www.cnblogs.com/hxbbing/p/4598175.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!