题目:
Given a string S,
find the longest palindromic substring in S. You may assume that the maximum length of S is
1000, and there exists one unique longest palindromic substring.
分析:
运用manacher算法,实现O(n)时间复杂度。参考这里。
class Solution {
public:
string longestPalindrome(string s) {
if (s.empty())
return s;
if (s.size() <= 2)
{
if (s[0] == s[s.size() - 1])
return s;
else
return s.substr(0, 1);
}
int size = s.size();
string str(2 * size + 1, '#');
for (int i = 0, j = 1; i<size; ++i, j += 2)
{
str[j] = s[i];
}
size = str.size();
vector<int> f(size, 0);
f[1] = 2;
//max_len是str最大半径,max_center是取值max_len时的下标
int max_len = 2, max_center = 1;
//cur_right是当前半径向右延伸所能到达的最大下标,center是取值cur_right时的下标
int cur_right = 2, center = 1;
for (int i = 2; i <= size - 3; ++i)
{
if (i>cur_right)
{
int r = 1;
while (i - r >= 0 && i + r<size && str[i - r] == str[i + r])
++r;
f[i] = r;
}
else
{
int i2 = center * 2 - i, i2_left = i2 - f[i2] + 1, center_left = center - f[center] + 1;
if (i2_left<center_left)
{
f[i] = cur_right - i + 1;
}
else if (i2_left == center_left)
{
int r = cur_right - i + 1;
while (i - r >= 0 && i + r<size && str[i - r] == str[i + r])
++r;
f[i] = r;
}
else
{
f[i] = f[i2];
}
}
//更新max_len和max_center
if (f[i]>max_len)
{
max_len = f[i];
max_center = i;
}
//更新cur_right和center
if (i + f[i] - 1>cur_right)
{
cur_right = i + f[i] - 1;
center = i;
}
}
string res = str.substr(max_center - max_len + 1, 2 * max_len - 1);
//删除字符 '#'
res.erase(remove(res.begin(), res.end(), '#'), res.end());
return res;
}
};leetcode - Longest Palindromic Substring
原文:http://blog.csdn.net/bupt8846/article/details/46574249