首页 > 其他 > 详细

华中师范大学2010年数学专业复变函数复试试题参考解答

时间:2014-03-22 20:12:15      阅读:606      评论:0      收藏:0      [点我收藏+]

3. 设 \bex f(z)=\frac{1}{(z-1)(z-2)}. \eex

f(z)=1bubuko.com,布布扣(z?1)(z?2)bubuko.com,布布扣bubuko.com,布布扣.bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣

(1) 求 f(z)f(z)bubuko.com,布布扣 |z|<1|z|<1bubuko.com,布布扣 内的 Taylor 展式.

(2) 求 f(z)f(z)bubuko.com,布布扣 在圆环 1<|z|<21<|z|<2bubuko.com,布布扣 内的 Laurent 展式.

(3) 求 f(z)f(z)bubuko.com,布布扣 在圆环 |z|>2|z|>2bubuko.com,布布扣 内的 Laurent 展式.

解答: (1) \beex \bea f(z)&=\frac{1}{z-2}-\frac{1}{z-1}\\ &=-\frac{1}{2}\frac{1}{1-\frac{z}{2}} +\frac{1}{1-z}\\ &=-\frac{1}{2}\sum_{n=0}^\infty \sex{\frac{z}{2}}^n +\sum_{n=0}^\infty z^n\\ &=\sum_{n=0}^\infty \sex{1-\frac{1}{2^{n+1}}}z^n,\quad |z|<1. \eea \eeex

f(z)bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣=1bubuko.com,布布扣z?2bubuko.com,布布扣bubuko.com,布布扣?1bubuko.com,布布扣z?1bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣=?1bubuko.com,布布扣2bubuko.com,布布扣bubuko.com,布布扣1bubuko.com,布布扣1?zbubuko.com,布布扣2bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣+1bubuko.com,布布扣1?zbubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣=?1bubuko.com,布布扣2bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣n=0bubuko.com,布布扣bubuko.com,布布扣(zbubuko.com,布布扣2bubuko.com,布布扣bubuko.com,布布扣)bubuko.com,布布扣nbubuko.com,布布扣+bubuko.com,布布扣n=0bubuko.com,布布扣bubuko.com,布布扣zbubuko.com,布布扣nbubuko.com,布布扣bubuko.com,布布扣=bubuko.com,布布扣n=0bubuko.com,布布扣bubuko.com,布布扣(1?1bubuko.com,布布扣2bubuko.com,布布扣n+1bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣)zbubuko.com,布布扣nbubuko.com,布布扣,|z|<1.bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣
(2) \beex \bea f(z)&=\frac{1}{z-2}-\frac{1}{z-1}\\ &=-\frac{1}{2}\frac{1}{1-\frac{z}{2}} -\frac{1}{z}\frac{1}{1-\frac{1}{z}}\\ &=-\frac{1}{2}\sum_{n=0}^\infty \sex{\frac{z}{2}}^n -\frac{1}{z}\sum_{n=0}^\infty \frac{1}{z^n}\\ &=-\sum_{n=1}^\infty \frac{1}{z^n}-\sum_{n=0}^\infty \frac{z^n}{2^{n+1}},\quad 1<|z|<2. \eea \eeex
f(z)bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣=1bubuko.com,布布扣z?2bubuko.com,布布扣bubuko.com,布布扣?1bubuko.com,布布扣z?1bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣=?1bubuko.com,布布扣2bubuko.com,布布扣bubuko.com,布布扣1bubuko.com,布布扣1?zbubuko.com,布布扣2bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣?1bubuko.com,布布扣zbubuko.com,布布扣bubuko.com,布布扣1bubuko.com,布布扣1?1bubuko.com,布布扣zbubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣=?1bubuko.com,布布扣2bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣n=0bubuko.com,布布扣bubuko.com,布布扣(zbubuko.com,布布扣2bubuko.com,布布扣bubuko.com,布布扣)bubuko.com,布布扣nbubuko.com,布布扣?1bubuko.com,布布扣zbubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣n=0bubuko.com,布布扣bubuko.com,布布扣1bubuko.com,布布扣zbubuko.com,布布扣nbubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣=?bubuko.com,布布扣n=1bubuko.com,布布扣bubuko.com,布布扣1bubuko.com,布布扣zbubuko.com,布布扣nbubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣?bubuko.com,布布扣n=0bubuko.com,布布扣bubuko.com,布布扣zbubuko.com,布布扣nbubuko.com,布布扣bubuko.com,布布扣2bubuko.com,布布扣n+1bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣,1<|z|<2.bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣
(3) \beex \bea f(z)&=\frac{1}{z-2}-\frac{1}{z-1}\\ &=\frac{1}{z}\frac{1}{1-\frac{2}{z}} -\frac{1}{z}\frac{1}{1-\frac{1}{z}}\\ &=\frac{1}{z}\sum_{n=0}^\infty \sex{\frac{2}{z}}^n -\frac{1}{z}\sum_{n=0}^\infty \sex{\frac{1}{z}}^n\\ &=\sum_{n=1}^\infty \frac{2^{n-1}-1}{z^n},\quad |z|>2. \eea \eeex
f(z)bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣=1bubuko.com,布布扣z?2bubuko.com,布布扣bubuko.com,布布扣?1bubuko.com,布布扣z?1bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣=1bubuko.com,布布扣zbubuko.com,布布扣bubuko.com,布布扣1bubuko.com,布布扣1?2bubuko.com,布布扣zbubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣?1bubuko.com,布布扣zbubuko.com,布布扣bubuko.com,布布扣1bubuko.com,布布扣1?1bubuko.com,布布扣zbubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣=1bubuko.com,布布扣zbubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣n=0bubuko.com,布布扣bubuko.com,布布扣(2bubuko.com,布布扣zbubuko.com,布布扣bubuko.com,布布扣)bubuko.com,布布扣nbubuko.com,布布扣?1bubuko.com,布布扣zbubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣n=0bubuko.com,布布扣bubuko.com,布布扣(1bubuko.com,布布扣zbubuko.com,布布扣bubuko.com,布布扣)bubuko.com,布布扣nbubuko.com,布布扣bubuko.com,布布扣=bubuko.com,布布扣n=1bubuko.com,布布扣bubuko.com,布布扣2bubuko.com,布布扣n?1bubuko.com,布布扣?1bubuko.com,布布扣zbubuko.com,布布扣nbubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣,|z|>2.bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣

 

 

 

4. 应用留数定理计算实积分 \dps{I(x)=\int_{-1}^1\frac{\rd t}{\sqrt{1-t^2}(t-x)}\ (|x|>1,x\in\bbR)} .

解答: \beex \bea I(x)&=\int_{-1}^1 \frac{\rd t}{\sqrt{1-t^2}(t-x)}\\ &=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\rd \tt}{\sin\tt-x}\quad(t=\sin\tt)\\ &=\int_{\frac{\pi}{2}}^{\frac{3\pi}{2}} \frac{\rd \tau}{\sin\tau-x}\quad(\pi-\tt=\tau)\\ &=\frac{1}{2}\sez{\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} +\int_{\frac{\pi}{2}}^{\frac{3\pi}{2}}\frac{\rd \tt}{\sin\tt-x}}\\ &=\frac{1}{2}\int_{-\frac{\pi}{2}}^{\frac{3\pi}{2}} \frac{\rd \tt}{\sin\tt-x}\\ &=\frac{1}{2}\int_{|z|=1}\frac{1}{\frac{z-z^{-1}}{2i}-x}\cdot \frac{\rd z}{iz}\\ &=\int_{|z|=1}\frac{\rd z}{z^2-2ixz-1}\\ &=\sedd{\ba{ll} 2\pi i\cdot \underset{z=i(x+\sqrt{x^2-1})}{\Res}\cfrac{1}{z^2-2ixz-1},&x<-1\\ 2\pi i\cdot \underset{z=i(x-\sqrt{x^2-1})}{\Res}\cfrac{1}{z^2-2ixz-1},&x>1 \ea}\\ &=\sedd{\ba{ll} \cfrac{\pi}{\sqrt{x^2-1}},&x<-1\\ -\cfrac{\pi}{\sqrt{x^2-1}},&x>1 \ea}\\ &=-\frac{\pi}{x\sqrt{1-\frac{1}{x^2}}}. \eea \eeex

 

 

来源: 第5卷第276期_华中师范大学2010年数学专业复变函数复试试题参考解答

华中师范大学2010年数学专业复变函数复试试题参考解答,布布扣,bubuko.com

华中师范大学2010年数学专业复变函数复试试题参考解答

原文:http://www.cnblogs.com/zhangzujin/p/3617975.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!