首页 > 其他 > 详细

[复变函数]第10堂课 3.2 Cauchy 积分定理

时间:2014-03-20 21:33:05      阅读:594      评论:0      收藏:0      [点我收藏+]

 

 

0. 引言

(1) \dps{\int_{|z-a|=\rho}\frac{1}{z-a}\rd z=2\pi i\neq 0}bubuko.com,布布扣|z?a|=ρbubuko.com,布布扣1bubuko.com,布布扣z?abubuko.com,布布扣bubuko.com,布布扣dz=2πi0bubuko.com,布布扣 : 有奇点 (在 |z|>0|z|>0bubuko.com,布布扣 : 二连通区域内解析), 周线积分 \neq 00bubuko.com,布布扣 ;

(2) \dps{\int_{0\to 1+i}\Re z\rd z=\frac{1+i}{2}}bubuko.com,布布扣01+ibubuko.com,布布扣Rezdz=1+ibubuko.com,布布扣2bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣 , \dps{\int_{0\to 1}+\int_{1+1+i}\Re z\rd z=\frac{1}{2}+i}bubuko.com,布布扣01bubuko.com,布布扣+bubuko.com,布布扣1+1+ibubuko.com,布布扣Rezdz=1bubuko.com,布布扣2bubuko.com,布布扣bubuko.com,布布扣+ibubuko.com,布布扣 : 不解析, 积分与路径有关, 周线积分 \neq 00bubuko.com,布布扣 .

 

1. Cauchy 积分定理 设 DDbubuko.com,布布扣 为单连通区域, ffbubuko.com,布布扣 DDbubuko.com,布布扣 内解析, CCbubuko.com,布布扣 DDbubuko.com,布布扣 内任一周线, 则 \dps{\int_C f(z)\rd z=0}bubuko.com,布布扣Cbubuko.com,布布扣f(z)dz=0bubuko.com,布布扣 .

证明 (假设 f‘fbubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣 连续) \beex \bea \int_C f(z)\rd z &=\int_C [u+iv]\cdot [\rd x+i\rd y]\\ &=\int_C [u\rd x-v\rd y]+i\int_C [v\rd x+u\rd y]\\ &=\iint_{I(C)} [-v_x-u_y]\rd x\rd y +\iint_{I(C)} [u_x-v_y]\rd x\rd y\\ &=0. \eea \eeex

bubuko.com,布布扣Cbubuko.com,布布扣f(z)dzbubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣=bubuko.com,布布扣Cbubuko.com,布布扣[u+iv]?[dx+idy]bubuko.com,布布扣=bubuko.com,布布扣Cbubuko.com,布布扣[udx?vdy]+ibubuko.com,布布扣Cbubuko.com,布布扣[vdx+udy]bubuko.com,布布扣=?bubuko.com,布布扣I(C)bubuko.com,布布扣[?vbubuko.com,布布扣xbubuko.com,布布扣?ububuko.com,布布扣ybubuko.com,布布扣]dxdy+?bubuko.com,布布扣I(C)bubuko.com,布布扣[ububuko.com,布布扣xbubuko.com,布布扣?vbubuko.com,布布扣ybubuko.com,布布扣]dxdybubuko.com,布布扣=0.bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣

(1) 推论

a. 设 DDbubuko.com,布布扣 为单连通区域, ffbubuko.com,布布扣 DDbubuko.com,布布扣 内解析, CCbubuko.com,布布扣 DDbubuko.com,布布扣 内任一闭曲线, 则 \dps{\int_Cf(z)\rd z=0}bubuko.com,布布扣Cbubuko.com,布布扣f(z)dz=0bubuko.com,布布扣 . (画图证明)

b. 设 DDbubuko.com,布布扣 为单连通区域, ffbubuko.com,布布扣 DDbubuko.com,布布扣 内解析, 则 ffbubuko.com,布布扣 DDbubuko.com,布布扣 内的积分与路径无关, 而 \bex \forall\ z_0, z\in D,\quad\int_{z_0}^z f(\zeta)\rd \zeta \eex

? zbubuko.com,布布扣0bubuko.com,布布扣,zD,bubuko.com,布布扣zbubuko.com,布布扣zbubuko.com,布布扣0bubuko.com,布布扣bubuko.com,布布扣f(ζ)dζbubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣
与所选的从 z_0zbubuko.com,布布扣0bubuko.com,布布扣bubuko.com,布布扣 zzbubuko.com,布布扣 的路径无关. (画图说明)

(2) 推广

a. 设 CCbubuko.com,布布扣 是一条周线, D=I(C)D=I(C)bubuko.com,布布扣 , ffbubuko.com,布布扣 \bar DDbubuko.com,布布扣ˉbubuko.com,布布扣bubuko.com,布布扣 上解析, 则 \dps{\int_Cf(z)\rd z=0}bubuko.com,布布扣Cbubuko.com,布布扣f(z)dz=0bubuko.com,布布扣 . (画图说明)

b. 设 CCbubuko.com,布布扣 是一条周线, D=I(C)D=I(C)bubuko.com,布布扣 , ffbubuko.com,布布扣 DDbubuko.com,布布扣 内解析, 在 \bar DDbubuko.com,布布扣ˉbubuko.com,布布扣bubuko.com,布布扣 上连续 (或称连续到 CCbubuko.com,布布扣 ), 则 \dps{\int_Cf(z)\rd z=0}bubuko.com,布布扣Cbubuko.com,布布扣f(z)dz=0bubuko.com,布布扣 .

c. 复周线: 有界 (n+1)(n+1)bubuko.com,布布扣 连通区域的边界 C=C_0+C_1^-+\cdots+C_n^-C=Cbubuko.com,布布扣0bubuko.com,布布扣+Cbubuko.com,布布扣?bubuko.com,布布扣1bubuko.com,布布扣+?+Cbubuko.com,布布扣?bubuko.com,布布扣nbubuko.com,布布扣bubuko.com,布布扣 (画图说明, 指出方向).

d. 设 DDbubuko.com,布布扣 (n+1)(n+1)bubuko.com,布布扣 连通区域, ffbubuko.com,布布扣 DDbubuko.com,布布扣 内解析, 在 \bar DDbubuko.com,布布扣ˉbubuko.com,布布扣bubuko.com,布布扣 上连续, 则 \dps{\int_Cf(z)\rd z=0} .

(3) 应用

a. 设 C:|z|=1 , 求 \dps{\int_C\frac{\rd z}{z+2}} \dps{\int_0^\pi \frac{1+2\cos \tt}{5+4\cos \tt}\rd \tt} 的值 (用 Cauchy 定理)

b. 设 \sqrt{z} 确定在沿负实轴割破了的 z 平面上, 且 w(1) =-1 . 求 \dps{\int_{|z-1|=1}\sqrt{z}\rd z} (用 (2) b).

c. 设 a 为周线 C 内一点, 求 \dps{\int_C\frac{\rd z}{(z-a)^n}\ (n\in\bbZ)} (用 (2) c).

d. 求 \dps{\int_{|z|=2}\frac{2z^2-z+1}{z-1}\rd z} .

解答: \beex \bea \int_{|z|=2}\frac{2z^2-z+1}{z-1}\rd z &=\int_{|z|=2}\frac{(z-1)^2+3(z-1)+2}{z-1}\rd z\\ &=\int_{|z|=2}[(z-1)+3]\rd z+2\int_{|z|=2}\frac{1}{z-1}\rd z\\ &=0+2\cdot 2\pi i\\ &=4\pi i. \eea \eeex

e. 求 \dps{\int_{|z|=1}\frac{2z^2-z+1}{(z-1)^2}\rd z} (答案: 6\pi i ).

 

2. 不定积分

(1) 定义: 设 D 为单连通区域, f D 内解析, z_0\in D , 则 \bex F(z)=\int_{z_0}^z f(\zeta)\rd \zeta,\quad z\in D \eex

(变上限积分) 称为 f 的一个不定积分 (原函数).

(2) F(z) D 内解析, 且 F‘(z)=f(z) .

(3) N-L 公式: \bex \int_{z_0}^z f(\zeta)\rd \zeta=F(z)-F(z_0). \eex

 

作业: P 140 T 6. 

[复变函数]第10堂课 3.2 Cauchy 积分定理,布布扣,bubuko.com

[复变函数]第10堂课 3.2 Cauchy 积分定理

原文:http://www.cnblogs.com/zhangzujin/p/3610719.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!