//EK模板
#include <iostream> #include <queue> #include<string.h> #include <cstdio> #define ll long long using namespace std; #define arraysize 1005 int maxData = 0x7fffffff; int capacity[arraysize][arraysize]; //记录残留网络的容量 int flow[arraysize]; //标记从源点到当前节点实际还剩多少流量可用 int pre[arraysize]; //标记在这条路径上当前节点的前驱,同时标记该节点是否在队列中 int n,m;//n为point m为边 queue<int> myqueue; int BFS(int src,int des) { int i; while(!myqueue.empty()) //队列清空 myqueue.pop(); for(i=1;i<=n;++i) { pre[i]=-1; } pre[src]=0; flow[src]= maxData; myqueue.push(src); while(!myqueue.empty()) { int index = myqueue.front(); myqueue.pop(); if(index == des) //找到了增广路径 break; for(i=1;i<=n;++i) { if(i!=src && capacity[index][i]>0 && pre[i]==-1) { pre[i] = index; //记录前驱 flow[i] = min(capacity[index][i],flow[index]); //关键:迭代的找到增量 myqueue.push(i); } } } if(pre[des]==-1) //残留图中不再存在增广路径 return -1; else return flow[des]; } ll maxFlow(int src,int des) { int increasement= 0; ll sumflow = 0; while((increasement=BFS(src,des))!=-1) { int k = des; //利用前驱寻找路径 while(k!=src) { int last = pre[k]; capacity[last][k] -= increasement; //改变正向边的容量 capacity[k][last] += increasement; //改变反向边的容量 k = last; } sumflow += increasement; } return sumflow; } int main() { int i; int start,end,ci; int T; scanf("%d",&T); for(int kase = 1; kase <= T; kase++) { scanf("%d%d",&n,&m); memset(capacity,0,sizeof(capacity)); memset(flow,0,sizeof(flow)); for(i=0;i<m;++i) { scanf("%d%d%d",&start,&end,&ci); if(start == end) //考虑起点终点相同的情况 continue; capacity[start][end] +=ci; //此处注意可能出现多条同一起点终点的情况 } printf("Case %d: %I64d\n",kase,maxFlow(1,n)); } return 0; }
ISAP
#include <stdio.h> #include <string.h> #include <algorithm> #define clear(A, X) memset (A, X, sizeof A) #define copy(A, B) memcpy (A, B, sizeof A) using namespace std; const int maxE = 1000000; const int maxN = 100000; const int maxQ = 1000000; const int oo = 0x3f3f3f3f; struct Edge { int v;//弧尾 int c;//容量 int n;//指向下一条从同一个弧头出发的弧 } edge[maxE];//边组 int adj[maxN], cntE;//前向星的表头 int Q[maxQ], head, tail;//队列 int d[maxN], cur[maxN], pre[maxN], num[maxN]; int sourse, sink, nv;//sourse:源点,sink:汇点,nv:编号修改的上限 int n, m; void addedge (int u, int v, int c) {//添加边 //正向边 edge[cntE].v = v; edge[cntE].c = c;//正向弧的容量为c edge[cntE].n = adj[u]; adj[u] = cntE++; //反向边 edge[cntE].v = u; edge[cntE].c = 0;//反向弧的容量为0 edge[cntE].n = adj[v]; adj[v] = cntE++; } void rev_bfs () {//反向BFS标号 clear (num, 0); clear (d, -1);//没标过号则为-1 d[sink] = 0;//汇点默认为标过号 num[0] = 1; head = tail = 0; Q[tail++] = sink; while (head != tail) { int u = Q[head++]; for (int i = adj[u]; ~i; i = edge[i].n) { int v = edge[i].v; if (~d[v]) continue;//已经标过号 d[v] = d[u] + 1;//标号 Q[tail++] = v; num[d[v]]++; } } } int ISAP() { copy (cur, adj);//复制,当前弧优化 rev_bfs ();//只用标号一次就够了,重标号在ISAP主函数中进行就行了 int flow = 0, u = pre[sourse] = sourse, i; while (d[sink] < nv) {//最长也就是一条链,其中最大的标号只会是nv - 1,如果大于等于nv了说明中间已经断层了。 if (u == sink) {//如果已经找到了一条增广路,则沿着增广路修改流量 int f = oo, neck; for (i = sourse; i != sink; i = edge[cur[i]].v) { if (f > edge[cur[i]].c) { f = edge[cur[i]].c;//不断更新需要减少的流量 neck = i;//记录回退点,目的是为了不用再回到起点重新找 } } for (i = sourse; i != sink; i = edge[cur[i]].v) {//修改流量 edge[cur[i]].c -= f; edge[cur[i] ^ 1].c += f; } flow += f;//更新 u = neck;//回退 } for (i = cur[u]; ~i; i = edge[i].n) if (d[edge[i].v] + 1 == d[u] && edge[i].c) break; if (~i) {//如果存在可行增广路,更新 cur[u] = i;//修改当前弧 pre[edge[i].v] = u; u = edge[i].v; } else {//否则回退,重新找增广路 if (0 == (--num[d[u]])) break;//GAP间隙优化,如果出现断层,可以知道一定不会再有增广路了 int mind = nv; for (i = adj[u]; ~i; i = edge[i].n) { if (edge[i].c && mind > d[edge[i].v]) {//寻找可以增广的最小标号 cur[u] = i;//修改当前弧 mind = d[edge[i].v]; } } d[u] = mind + 1; num[d[u]]++; u = pre[u];//回退 } } return flow; } void init () {//初始化 clear (adj, -1); cntE = 0; } void work () { int u, v, c; init (); for (int i = 0; i < m; ++ i) scanf ("%d%d%d", &u, &v, &c), addedge (u, v, c); sourse = 1; sink = n; nv = sink + 1; printf ("%d\n", ISAP ()); } int main() { while (~scanf("%d%d", &m, &n)) work (); return 0; }
Dinic
// UVa11248 Frequency Hopping:使用Dinic算法 // Rujia Liu #include<cstdio> #include<cstring> #include<queue> #include<vector> #include<algorithm> using namespace std; const int maxn = 100 + 10; const int INF = 1000000000; struct Edge { int from, to, cap, flow; }; bool operator < (const Edge& a, const Edge& b) { return a.from < b.from || (a.from == b.from && a.to < b.to); } struct Dinic { int n, m, s, t; vector<Edge> edges; // 边数的两倍 vector<int> G[maxn]; // 邻接表,G[i][j]表示结点i的第j条边在e数组中的序号 bool vis[maxn]; // BFS使用 int d[maxn]; // 从起点到i的距离 int cur[maxn]; // 当前弧指针 void ClearAll(int n) { for(int i = 0; i < n; i++) G[i].clear(); edges.clear(); } void ClearFlow() { for(int i = 0; i < edges.size(); i++) edges[i].flow = 0; } void AddEdge(int from, int to, int cap) { edges.push_back((Edge){from, to, cap, 0}); edges.push_back((Edge){to, from, 0, 0}); m = edges.size(); G[from].push_back(m-2); G[to].push_back(m-1); } bool BFS(){ memset(vis, 0, sizeof(vis)); queue<int> Q; Q.push(s); vis[s] = 1; d[s] = 0; while(!Q.empty()) { int x = Q.front(); Q.pop(); for(int i = 0; i < G[x].size(); i++) { Edge& e = edges[G[x][i]]; if(!vis[e.to] && e.cap > e.flow) { vis[e.to] = 1; d[e.to] = d[x] + 1; Q.push(e.to); } } } return vis[t]; } int DFS(int x, int a) { if(x == t || a == 0) return a; int flow = 0, f; for(int& i = cur[x]; i < G[x].size(); i++) { Edge& e = edges[G[x][i]]; if(d[x] + 1 == d[e.to] && (f = DFS(e.to, min(a, e.cap-e.flow))) > 0) { e.flow += f; edges[G[x][i]^1].flow -= f; flow += f; a -= f; if(a == 0) break; } } return flow; } int Maxflow(int s, int t) { this->s = s; this->t = t; int flow = 0; while(BFS()) { memset(cur, 0, sizeof(cur)); flow += DFS(s, INF); } return flow; } vector<int> Mincut() { // call this after maxflow vector<int> ans; for(int i = 0; i < edges.size(); i++) { Edge& e = edges[i]; if(vis[e.from] && !vis[e.to] && e.cap > 0) ans.push_back(i); } return ans; } void Reduce() { for(int i = 0; i < edges.size(); i++) edges[i].cap -= edges[i].flow; } }; Dinic g; int main() { int n, e, c, kase = 0; while(scanf("%d%d%d", &n, &e, &c) == 3 && n) { g.ClearAll(n); while(e--) { int b1, b2, fp; scanf("%d%d%d", &b1, &b2, &fp); g.AddEdge(b1-1, b2-1, fp); } int flow = g.Maxflow(0, n-1); printf("Case %d: ", ++kase); if(flow >= c) printf("possible\n"); else { vector<int> cut = g.Mincut(); g.Reduce(); vector<Edge> ans; for(int i = 0; i < cut.size(); i++) { Edge& e = g.edges[cut[i]]; e.cap = c; g.ClearFlow(); if(flow + g.Maxflow(0, n-1) >= c) ans.push_back(e); e.cap = 0; } if(ans.empty()) printf("not possible\n"); else { sort(ans.begin(), ans.end()); printf("possible option:(%d,%d)", ans[0].from+1, ans[0].to+1); for(int i = 1; i < ans.size(); i++) printf(",(%d,%d)", ans[i].from+1, ans[i].to+1); printf("\n"); } } } return 0; }
原文:http://www.cnblogs.com/Lzy2015/p/4530125.html