首页 > 其他 > 详细

网络流

时间:2015-05-26 12:35:08      阅读:170      评论:0      收藏:0      [点我收藏+]
//EK模板
#include <iostream> #include <queue> #include<string.h> #include <cstdio> #define ll long long using namespace std; #define arraysize 1005 int maxData = 0x7fffffff; int capacity[arraysize][arraysize]; //记录残留网络的容量 int flow[arraysize]; //标记从源点到当前节点实际还剩多少流量可用 int pre[arraysize]; //标记在这条路径上当前节点的前驱,同时标记该节点是否在队列中 int n,m;//n为point m为边 queue<int> myqueue; int BFS(int src,int des) { int i; while(!myqueue.empty()) //队列清空 myqueue.pop(); for(i=1;i<=n;++i) { pre[i]=-1; } pre[src]=0; flow[src]= maxData; myqueue.push(src); while(!myqueue.empty()) { int index = myqueue.front(); myqueue.pop(); if(index == des) //找到了增广路径 break; for(i=1;i<=n;++i) { if(i!=src && capacity[index][i]>0 && pre[i]==-1) { pre[i] = index; //记录前驱 flow[i] = min(capacity[index][i],flow[index]); //关键:迭代的找到增量 myqueue.push(i); } } } if(pre[des]==-1) //残留图中不再存在增广路径 return -1; else return flow[des]; } ll maxFlow(int src,int des) { int increasement= 0; ll sumflow = 0; while((increasement=BFS(src,des))!=-1) { int k = des; //利用前驱寻找路径 while(k!=src) { int last = pre[k]; capacity[last][k] -= increasement; //改变正向边的容量 capacity[k][last] += increasement; //改变反向边的容量 k = last; } sumflow += increasement; } return sumflow; } int main() { int i; int start,end,ci; int T; scanf("%d",&T); for(int kase = 1; kase <= T; kase++) { scanf("%d%d",&n,&m); memset(capacity,0,sizeof(capacity)); memset(flow,0,sizeof(flow)); for(i=0;i<m;++i) { scanf("%d%d%d",&start,&end,&ci); if(start == end) //考虑起点终点相同的情况 continue; capacity[start][end] +=ci; //此处注意可能出现多条同一起点终点的情况 } printf("Case %d: %I64d\n",kase,maxFlow(1,n)); } return 0; }

  ISAP

#include <stdio.h>
#include <string.h>
#include <algorithm>
#define clear(A, X) memset (A, X, sizeof A)
#define copy(A, B) memcpy (A, B, sizeof A)
using namespace std;

const int maxE = 1000000;
const int maxN = 100000;
const int maxQ = 1000000;
const int oo = 0x3f3f3f3f;

struct Edge {
   int v;//弧尾
   int c;//容量
   int n;//指向下一条从同一个弧头出发的弧
} edge[maxE];//边组


int adj[maxN], cntE;//前向星的表头
int Q[maxQ], head, tail;//队列
int d[maxN], cur[maxN], pre[maxN], num[maxN];
int sourse, sink, nv;//sourse:源点,sink:汇点,nv:编号修改的上限
int n, m;

void addedge (int u, int v, int c) {//添加边
    //正向边
    edge[cntE].v = v;
    edge[cntE].c = c;//正向弧的容量为c
    edge[cntE].n = adj[u];
    adj[u] = cntE++;

    //反向边
    edge[cntE].v = u;
    edge[cntE].c = 0;//反向弧的容量为0
    edge[cntE].n = adj[v];
    adj[v] = cntE++;
}

void rev_bfs () {//反向BFS标号
    clear (num, 0);
    clear (d, -1);//没标过号则为-1
    d[sink] = 0;//汇点默认为标过号
    num[0] = 1;
    head = tail = 0;
    Q[tail++] = sink;

    while (head != tail) {
        int u = Q[head++];
        for (int i = adj[u]; ~i; i = edge[i].n) {
            int v = edge[i].v;
            if (~d[v]) continue;//已经标过号
            d[v] = d[u] + 1;//标号
            Q[tail++] = v;
            num[d[v]]++;
        }
    }
}

int ISAP()
{
    copy (cur, adj);//复制,当前弧优化
    rev_bfs ();//只用标号一次就够了,重标号在ISAP主函数中进行就行了
    int flow = 0, u = pre[sourse] = sourse, i;

    while (d[sink] < nv)
    {//最长也就是一条链,其中最大的标号只会是nv - 1,如果大于等于nv了说明中间已经断层了。
        if (u == sink)
        {//如果已经找到了一条增广路,则沿着增广路修改流量
            int f = oo, neck;
            for (i = sourse; i != sink; i = edge[cur[i]].v)
            {
                if (f > edge[cur[i]].c)
                {
                    f = edge[cur[i]].c;//不断更新需要减少的流量
                    neck = i;//记录回退点,目的是为了不用再回到起点重新找
                }
            }
            for (i = sourse; i != sink; i = edge[cur[i]].v)
            {//修改流量
                edge[cur[i]].c -= f;
                edge[cur[i] ^ 1].c += f;
            }
            flow += f;//更新
            u = neck;//回退
        }
        for (i = cur[u]; ~i; i = edge[i].n) if (d[edge[i].v] + 1 == d[u] && edge[i].c) break;
        if (~i)
        {//如果存在可行增广路,更新
            cur[u] = i;//修改当前弧
            pre[edge[i].v] = u;
            u = edge[i].v;
        }
        else
        {//否则回退,重新找增广路
            if (0 == (--num[d[u]])) break;//GAP间隙优化,如果出现断层,可以知道一定不会再有增广路了
            int mind = nv;
            for (i = adj[u]; ~i; i = edge[i].n)
            {
                if (edge[i].c && mind > d[edge[i].v])
                {//寻找可以增广的最小标号
                    cur[u] = i;//修改当前弧
                    mind = d[edge[i].v];
                }
            }
            d[u] = mind + 1;
            num[d[u]]++;
            u = pre[u];//回退
        }
    }

    return flow;
}

void init () {//初始化
    clear (adj, -1);
    cntE = 0;
}

void work () {
    int u, v, c;
    init ();
    for (int i = 0; i < m; ++ i) scanf ("%d%d%d", &u, &v, &c), addedge (u, v, c);
    sourse = 1; sink = n; nv = sink + 1;
    printf ("%d\n", ISAP ());
}
int main() {
    while (~scanf("%d%d", &m, &n)) work ();
    return 0;
}

  Dinic

// UVa11248 Frequency Hopping:使用Dinic算法
// Rujia Liu
#include<cstdio>
#include<cstring>
#include<queue>
#include<vector>
#include<algorithm>
using namespace std;

const int maxn = 100 + 10;
const int INF = 1000000000;

struct Edge {
  int from, to, cap, flow;
};

bool operator < (const Edge& a, const Edge& b) {
  return a.from < b.from || (a.from == b.from && a.to < b.to);
}

struct Dinic {
  int n, m, s, t;
  vector<Edge> edges;    // 边数的两倍
  vector<int> G[maxn];   // 邻接表,G[i][j]表示结点i的第j条边在e数组中的序号
  bool vis[maxn];         // BFS使用
  int d[maxn];           // 从起点到i的距离
  int cur[maxn];        // 当前弧指针

  void ClearAll(int n) {
    for(int i = 0; i < n; i++) G[i].clear();
    edges.clear();
  }

  void ClearFlow() {
    for(int i = 0; i < edges.size(); i++) edges[i].flow = 0;
  }

  void AddEdge(int from, int to, int cap) {
    edges.push_back((Edge){from, to, cap, 0});
    edges.push_back((Edge){to, from, 0, 0});
    m = edges.size();
    G[from].push_back(m-2);
    G[to].push_back(m-1);
  }

  bool BFS(){
    memset(vis, 0, sizeof(vis));
    queue<int> Q;
    Q.push(s);
    vis[s] = 1;
    d[s] = 0;
    while(!Q.empty()) {
      int x = Q.front(); Q.pop();
      for(int i = 0; i < G[x].size(); i++) {
        Edge& e = edges[G[x][i]];
        if(!vis[e.to] && e.cap > e.flow) {
          vis[e.to] = 1;
          d[e.to] = d[x] + 1;
          Q.push(e.to);
        }
      }
    }
    return vis[t];
  }

  int DFS(int x, int a) {
    if(x == t || a == 0) return a;
    int flow = 0, f;
    for(int& i = cur[x]; i < G[x].size(); i++) {
      Edge& e = edges[G[x][i]];
      if(d[x] + 1 == d[e.to] && (f = DFS(e.to, min(a, e.cap-e.flow))) > 0) {
        e.flow += f;
        edges[G[x][i]^1].flow -= f;
        flow += f;
        a -= f;
        if(a == 0) break;
      }
    }
    return flow;
  }

  int Maxflow(int s, int t) {
    this->s = s; this->t = t;
    int flow = 0;
    while(BFS()) {
      memset(cur, 0, sizeof(cur));
      flow += DFS(s, INF);
    }
    return flow;
  }

  vector<int> Mincut() { // call this after maxflow
    vector<int> ans;
    for(int i = 0; i < edges.size(); i++) {
      Edge& e = edges[i];
      if(vis[e.from] && !vis[e.to] && e.cap > 0) ans.push_back(i);
    }
    return ans;
  }

  void Reduce() {
    for(int i = 0; i < edges.size(); i++) edges[i].cap -= edges[i].flow;
  }
};

Dinic g;

int main() {
  int n, e, c, kase = 0;
  while(scanf("%d%d%d", &n, &e, &c) == 3 && n) {
    g.ClearAll(n);
    while(e--) {
      int b1, b2, fp;
      scanf("%d%d%d", &b1, &b2, &fp);
      g.AddEdge(b1-1, b2-1, fp);
    }
    int flow = g.Maxflow(0, n-1);
    printf("Case %d: ", ++kase);
    if(flow >= c) printf("possible\n");
    else {
      vector<int> cut = g.Mincut();
      g.Reduce();
      vector<Edge> ans;
      for(int i = 0; i < cut.size(); i++) {
        Edge& e = g.edges[cut[i]];
        e.cap = c;
        g.ClearFlow();
        if(flow + g.Maxflow(0, n-1) >= c) ans.push_back(e);
        e.cap = 0;
      }
      if(ans.empty()) printf("not possible\n");
      else {
        sort(ans.begin(), ans.end());
        printf("possible option:(%d,%d)", ans[0].from+1, ans[0].to+1);
        for(int i = 1; i < ans.size(); i++)
          printf(",(%d,%d)", ans[i].from+1, ans[i].to+1);
        printf("\n");
      }
    }
  }
  return 0;
}

  

网络流

原文:http://www.cnblogs.com/Lzy2015/p/4530125.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!