题意:
有S个课程要教,
学校本来有m个教师 给出工资和所教课程编号 (在职教师不能辞退)
来应聘的有n个教师 给出工资和所教课程编号
问保证每个课程都有两个老师可以教的前提下,最少发多少工资
思路:
水题;
总共最多只有8个课程,状态压缩
d[i][s1][s2] 表示当前状态下,有一个老师教的课程是s1,有两个或两个人以上教的课程是s2
转移就是当前教师选或不选,对应的转移到下一个(i+1个)教师的决策即可。
code:
#include<cstdio>
#include<iostream>
#include<sstream>
#include<cstring>
#include<algorithm>
#include<vector>
#include<string>
#include<queue>
#include<map>
#include<set>
#include<cmath>
#include<cctype>
#include<cstdlib>
using namespace std;
#define INF 0x3f3f3f3f
#define PI acos(-1.0)
#define mem(a, b) memset(a, b, sizeof(a))
#define mod 1000000007
typedef pair<int,int> pii;
typedef long long LL;
//------------------------------
const int maxn = 125;
const int maxs = (1<<8);
int S,m,n;
int cost[maxn], s[maxn];
void init(){
string line;
int tmp;
for(int i = 0; i < m+n; i++){
getline(cin, line);
stringstream ss(line);
ss >> cost[i];
s[i] = 0;
while(ss >> tmp) s[i] |= (1 << (tmp-1));
}
}
int d[maxn][maxs][maxs];
int dfs(int i, int s0, int s1, int s2){
if(i == m + n) return s2 == (1<<S)-1 ? 0 : INF;
int& ans = d[i][s1][s2];
if(ans >= 0) return ans;
ans = INF;
if(i >= m) ans = dfs(i+1, s0, s1, s2);
int m0 = s[i] & s0, m1 = s[i] & s1;
s0 ^= m0;
s1 = (s1 ^ m1) | m0;
s2 |= m1;
ans = min(ans, cost[i] + dfs(i+1, s0, s1, s2));
return ans;
}
void solve(){
memset(d, -1, sizeof(d));
int ans = dfs(0,(1<<S)-1, 0,0);
printf("%d\n",ans);
}
int main(){
while(scanf("%d%d%d",&S, &m, &n) != EOF){
getchar();
if(S == 0) break;
init();
solve();
}
return 0;
}
getlin(cin, line);
stringstream ss(line);
ss >> cost[i];
while(ss>>tmp){
}
这种方式来处理,而是采取了读入到换行符的方式;
现在通过这道题目学习了一种新的处理方式。很好
code2:
#include<cstdio>
#include<iostream>
#include<sstream>
#include<cstring>
#include<algorithm>
#include<vector>
#include<string>
#include<queue>
#include<map>
#include<set>
#include<cmath>
#include<cctype>
#include<cstdlib>
using namespace std;
#define INF 0x3f3f3f3f
#define PI acos(-1.0)
#define mem(a, b) memset(a, b, sizeof(a))
#define mod 1000000007
typedef pair<int,int> pii;
typedef long long LL;
//------------------------------
const int maxn = 125;
const int maxs = (1<<8);
int S,m,n;
int cost[maxn], s[maxn];
void init(){
int tmp;
char ch;
for(int i = 0; i < m+n; i++){
scanf("%d",&tmp);
cost[i] = tmp;
s[i] = 0;
while(1){
scanf("%c",&ch);
if(ch == '\n') break;
if(isdigit(ch)){
tmp = ch - '0';
s[i] |= (1<<(tmp-1));
}
}
}
}
int d[maxn][maxs][maxs];
int dfs(int i, int s0, int s1, int s2){
if(i == m + n) return s2 == (1<<S)-1 ? 0 : INF;
int& ans = d[i][s1][s2];
if(ans >= 0) return ans;
ans = INF;
if(i >= m) ans = dfs(i+1, s0, s1, s2);
int m0 = s[i] & s0, m1 = s[i] & s1;
s0 ^= m0;
s1 = (s1 ^ m1) | m0;
s2 |= m1;
ans = min(ans, cost[i] + dfs(i+1, s0, s1, s2));
return ans;
}
void solve(){
memset(d, -1, sizeof(d));
int ans = dfs(0,(1<<S)-1, 0,0);
printf("%d\n",ans);
}
int main(){
while(scanf("%d%d%d",&S, &m, &n) != EOF){
getchar();
if(S == 0) break;
init();
solve();
}
return 0;
}
maxs定义太大会超时原文:http://blog.csdn.net/u013382399/article/details/45727381