一、线段树(点修改)
Update(x,v): 把Ax修改为v
Query(L,R): 计算区间[qL,qR] 最小值。
代码:
- #include<cstdio>
- #include<cstring>
- #include<algorithm>
- using namespace std;
-
- const int INF = 1000000000;
- const int maxnode = 1<<17;
-
- int op, qL, qR, p, v;
-
- struct IntervalTree {
- int minv[maxnode];
-
- void update(int o, int L, int R) {
- int M = L + (R-L)/2;
- if(L == R) minv[o] = v;
- else {
-
- if(p <= M) update(o*2, L, M); else update(o*2+1, M+1, R);
-
- minv[o] = min(minv[o*2], minv[o*2+1]);
- }
- }
-
- int query(int o, int L, int R) {
- int M = L + (R-L)/2, ans = INF;
- if(qL <= L && R <= qR) return minv[o];
- if(qL <= M) ans = min(ans, query(o*2, L, M));
- if(M < qR) ans = min(ans, query(o*2+1, M+1, R));
- return ans;
- }
- };
-
-
- IntervalTree tree;
-
- int main() {
- int n, m;
- while(scanf("%d%d", &n, &m) == 2) {
- memset(&tree, 0, sizeof(tree));
- while(m--) {
- scanf("%d", &op);
- if(op == 1) {
- scanf("%d%d", &p, &v);
- tree.update(1, 1, n);
- } else {
- scanf("%d%d", &qL, &qR);
- printf("%d\n", tree.query(1, 1, n));
- }
- }
- }
- return 0;
- }
二、区间修改:
1.操作一:
- #include<cstdio>
- #include<cstring>
- #include<algorithm>
- using namespace std;
-
- const int maxnode = 1<<17;
-
- int <span style="color:#ff0000;">_sum</span>, _min, _max, op, qL, qR, v;
-
- struct IntervalTree {
- int sumv[maxnode], minv[maxnode], maxv[maxnode], addv[maxnode];
-
-
- void maintain(int o, int L, int R) {
- int lc = o*2, rc = o*2+1;
- sumv[o] = minv[o] = maxv[o] = 0;
- if(R > L) {
- sumv[o] = sumv[lc] + sumv[rc];
- minv[o] = min(minv[lc], minv[rc]);
- maxv[o] = max(maxv[lc], maxv[rc]);
- }
- if(addv[o]) { minv[o] += addv[o]; maxv[o] += addv[o]; sumv[o] += addv[o] * (R-L+1); }
- }
-
- void update(int o, int L, int R) {
- int lc = o*2, rc = o*2+1;
- if(qL <= L && qR >= R) {
- addv[o] += v;
- } else {
- int M = L + (R-L)/2;
- if(qL <= M) update(lc, L, M);
- if(qR > M) update(rc, M+1, R);
- }
- maintain(o, L, R);
- }
-
- void query(int o, int L, int R, int add) {
- if(qL <= L && qR >= R) {
- _sum += sumv[o] + add * (R-L+1);
- _min = min(_min, minv[o] + add);
- _max = max(_max, maxv[o] + add);
- } else {
- int M = L + (R-L)/2;
- if(qL <= M) query(o*2, L, M, add + addv[o]);
- if(qR > M) query(o*2+1, M+1, R, add + addv[o]);
- }
- }
- };
-
- const int INF = 1000000000;
-
- IntervalTree tree;
-
- int main() {
- int n, m;
- while(scanf("%d%d", &n, &m) == 2) {
- memset(&tree, 0, sizeof(tree));
- while(m--) {
- scanf("%d%d%d", &op, &qL, &qR);
- if(op == 1) {
- scanf("%d", &v);
- tree.update(1, 1, n);
- } else {
- _sum = 0; _min = INF; _max = -INF;
- tree.query(1, 1, n, 0);
- printf("%d %d %d\n", _sum, _min, _max);
- }
- }
- }
- return 0;
- }
2.操作二:
- #include<cstdio>
- #include<cstring>
- #include<algorithm>
- using namespace std;
-
- const int maxnode = 1<<17;
-
- int _sum, _min, _max, op, qL, qR, v;
-
- struct IntervalTree {
- int sumv[maxnode], minv[maxnode], maxv[maxnode], setv[maxnode];
-
-
- void maintain(int o, int L, int R) {
- int lc = o*2, rc = o*2+1;
- if(R > L) {
- sumv[o] = sumv[lc] + sumv[rc];
- minv[o] = min(minv[lc], minv[rc]);
- maxv[o] = max(maxv[lc], maxv[rc]);
- }
- if(setv[o] >= 0) { minv[o] = maxv[o] = setv[o]; sumv[o] = setv[o] * (R-L+1); }
- }
-
-
- void pushdown(int o) {
- int lc = o*2, rc = o*2+1;
- if(setv[o] >= 0) {
- setv[lc] = setv[rc] = setv[o];
- setv[o] = -1;
- }
- }
-
- void update(int o, int L, int R) {
- int lc = o*2, rc = o*2+1;
- if(qL <= L && qR >= R) {
- setv[o] = v;
- } else {
- pushdown(o);
- int M = L + (R-L)/2;
- if(qL <= M) update(lc, L, M); else maintain(lc, L, M);
- if(qR > M) update(rc, M+1, R); else maintain(rc, M+1, R);
- }
- maintain(o, L, R);
- }
-
- void query(int o, int L, int R) {
- if(setv[o] >= 0) {
- _sum += setv[o] * (min(R,qR)-max(L,qL)+1);
- _min = min(_min, setv[o]);
- _max = max(_max, setv[o]);
- } else if(qL <= L && qR >= R) {
- _sum += sumv[o];
- _min = min(_min, minv[o]);
- _max = max(_max, maxv[o]);
- } else {
- int M = L + (R-L)/2;
- if(qL <= M) query(o*2, L, M);
- if(qR > M) query(o*2+1, M+1, R);
- }
- }
- };
-
- const int INF = 1000000000;
-
- IntervalTree tree;
-
- int main() {
- int n, m;
- while(scanf("%d%d", &n, &m) == 2) {
- memset(&tree, 0, sizeof(tree));
- memset(tree.setv, -1, sizeof(tree.setv));
- tree.setv[1] = 0;
- while(m--) {
- scanf("%d%d%d", &op, &qL, &qR);
- if(op == 1) {
- scanf("%d", &v);
- tree.update(1, 1, n);
- } else {
- _sum = 0; _min = INF; _max = -INF;
- tree.query(1, 1, n);
- printf("%d %d %d\n", _sum, _min, _max);
- }
- }
- }
- return 0;
- }
线段树模板 (刘汝佳)
原文:http://www.cnblogs.com/xianbin7/p/4489655.html