5 1 3 4 2 4
64Hintgcd(x,y) means the greatest common divisor of x and y.
给你一个a数组,让你计算那段代码的结果,用容斥原理就ok,莫比乌斯反演也行,不过不会莫比乌斯反演(也是容斥原理)orz。。。改天学习下。
代码如下:
#include<iostream>
#include<algorithm>
#include<cstdio>
#include<vector>
#include<cstring>
#include<map>
using namespace std;
typedef long long ll;
const int maxn = 1e4 + 10;
const ll mod = 10007;
#define rep(i,a,b) for(int i=(a);i<(b);i++)
#define pb push_back
int cnt[maxn],a[maxn];
ll d[maxn];
int main()
{
int n;
while(~scanf("%d",&n)) {
int Mgcd = 1;
for(int i = 0; i < n; i++) {
int x;
scanf("%d",&x);
Mgcd = max(Mgcd,x);
a[i] = x;
}
memset(cnt,0,sizeof(cnt[0])*Mgcd+20);
for(int i = 0; i < n; i++)cnt[a[i]]++;
ll ans = 0,res = 0;
/*d[i]表示任取两数gcd为i的方案数*/
for(ll i = Mgcd; i > 0; i--) {
ll tot = 0;
for(ll j = i; j <= Mgcd; j+= i)
{
tot += cnt[j];
d[i] = (d[i]-d[j])%mod;/*减去gcd为i的倍数的方案数(容斥原理)*/
}
/*gcd为i的方法数等于任选两个数(可重)是i的倍数的方案
除去gcd为i的倍数的情况(前面已经减掉了)*/
d[i] = (d[i] + tot*tot)%mod;
ans = (d[i]*i*i)%mod;
res = (res+i*d[i])%mod;
}
cout<<((ans-res)%mod+mod)%mod<<endl;
}
return 0;
}
原文:http://blog.csdn.net/acvcla/article/details/45302039