CNN通过增强相邻两层中神经元的局部的连接来发掘局部空间相关性. m层的隐输入单元和m-1层的一部分空间相邻,并具有连续可视野的神经元相连接. 它们的关系如下图所示:
从概念上讲,特征图通过对输入图像在一个线性滤波器上的卷积运算,增加一个便宜量,在结果上作用一个非线性函数得到.如果我们把某层的第k个的特征图记为$h^k$,其过滤器由权重$W$和偏移量$b_k$决定, 那么,特征图可以通过下面的函数得到:
$$h^k_{ij} = tanh ( (W^k * x)_{ij} + b_k ) $$
为了更好的表达数据, 隐层由一系列的多个特征图构成${h^{(k)}, k= 0 .. K}$. 其权重$W$由四个参数决定: 目标特征图的索引,源特征图的索引,源水平位置索引和源垂直位置索引. 偏移量为一个向量,其中每一个元素对应目标特征图的一个索引. 其逻辑关系通过下图表示:
Figure 1: 卷积层实例 (这个图和下面的说明有点冲突,下面的特征权重表示成了$W^0$,$W^1$,图中是 $W^1$,$W^2$)
这里是一个两层的CNN,它有 m-1层的四个特征图和m层的两个特征图($h^0, h^1$)构成. 神经元在$h^0$和$h^1$的输出(蓝色和红色的框所示)是由m-1层落入其相应的2*2的可视野的像素计算得到, 这里需要注意可视野如何地跨四个特征图.其权重为3D张量,分别表示了输入特征图的索引,以及像素的坐标.
整合以上概念, $W_{ij}^{kl}$表示了连接m层第k个特征图的特征图上每一个像素的权重, 像素为m-1层的第l个特征图,其位置为 $(i,j)$.
Convop是Theano中实现卷积的函数, 它主要重复了scipy工具包中signal.convolve2d的函数功能. 总的来讲,ConvOp包含两个参数:
下面的代码实现了一个类似图1里面的卷积层. 输入图像包括大小为120*160的三个特征图(对应RGB). 我们可以用两个具有9*9的可视野的卷积过滤器.
deeplearning----卷积神经网络,布布扣,bubuko.com
原文:http://www.cnblogs.com/Iknowyou/p/3599364.html