3 10 3 1 2 3 0 1 2 100 7 3 4 5 6 7 8 9 1 2 3 4 5 6 7 10000 10 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9
1 0 3
思路:还是把M个同余方程两两合并用extgcd依次解决即可
//249MS 1400K 1068 B G++
#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
using namespace std;
typedef long long ll;
ll a[15],b[15];
ll N,M;
ll x,y;
ll e_gcd(ll a,ll b,ll&x,ll&y)
{
ll ans;
if(b==0) ans=a,x=1,y=0;
else ans=e_gcd(b,a%b,y,x),y-=(a/b)*x;
return ans;
}
bool flag;
int main()
{
int T;
scanf("%d",&T);
while(T--)
{
flag=0;
scanf("%I64d%I64d",&N,&M);
for(int i=1;i<=M;i++) scanf("%I64d",&a[i]);
for(int i=1;i<=M;i++) scanf("%I64d",&b[i]);
for(int i=2;i<=M;i++)
{
ll A=a[i-1],B=a[i],R=b[i]-b[i-1];
ll d=e_gcd(A,B,x,y);
if(R%d) flag=1;
ll t=B/d;
x=(x*R/d%t+t)%t;
a[i]=a[i-1]*a[i]/d;//合并成新的同余方程
b[i]=x*a[i-1]+b[i-1];//合并成新的同余方程
}
if(flag) puts("0");
else
{
ll ans=0,lcm=a[M];
b[M]=(b[M]%lcm+lcm-1)%lcm+1;//使解在1~lcm[a1,a2,a3...an]之内,因为题目要求是正数不包括0
while(b[M]<=N) ans++,b[M]+=lcm;
printf("%I64d\n",ans);
}
}
return 0;
}原文:http://blog.csdn.net/kalilili/article/details/44917757