首页 > 其他 > 详细

HDU 2476 区间dp

时间:2014-03-12 09:00:41      阅读:324      评论:0      收藏:0      [点我收藏+]

String painter

Time Limit: 5000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 1410    Accepted Submission(s): 606


Problem Description
There are two strings A and B with equal length. Both strings are made up of lower case letters. Now you have a powerful string painter. With the help of the painter, you can change a segment of characters of a string to any other character you want. That is, after using the painter, the segment is made up of only one kind of character. Now your task is to change A to B using string painter. What’s the minimum number of operations?
 

Input
Input contains multiple cases. Each case consists of two lines:
The first line contains string A.
The second line contains string B.
The length of both strings will not be greater than 100.
 

Output
A single line contains one integer representing the answer.
 

Sample Input
zzzzzfzzzzz abcdefedcba abababababab cdcdcdcdcdcd
 

Sample Output
6 7
 

Source
 
给定两个字符串,每一次可以把某一段刷为同一个字母,求最少刷多少次,可以把字符串1刷为字符串2。
区间dp,先对字符串2进行预处理,然后扫描得出答案。
代码:
/* ***********************************************
Author :xianxingwuguan
Created Time :2014/3/12 0:09:36
File Name :1.cpp
************************************************ */
#pragma comment(linker, "/STACK:102400000,102400000")
#include <stdio.h>
#include <iostream>
#include <algorithm>
#include <sstream>
#include <stdlib.h>
#include <string.h>
#include <limits.h>
#include <string>
#include <time.h>
#include <math.h>
#include <queue>
#include <stack>
#include <set>
#include <map>
using namespace std;
char s1[105],s2[105];  
int dp[105][105];//dp[i][j]为i~j的刷法  
int ans[105],i,j,k,len;  
int main()  {  
    while(~scanf("%s%s",s1,s2)){  
        len = strlen(s1);  
        memset(dp,0,sizeof(dp));  
        for(j = 0; j<len; j++)  
            for(i = j; i>=0; i--)//j为尾,i为头  
            {  
                dp[i][j] = dp[i+1][j]+1;//先每个单独刷  
                for(k = i+1; k<=j; k++)//i到j中间所有的刷法  
                    if(s2[i]==s2[k])  
                        dp[i][j] = min(dp[i][j],(dp[i+1][k]+dp[k+1][j]));//i与k相同,寻找i刷到k的最优方案   
            }  
        for(i = 0; i<len; i++)ans[i] = dp[0][i];//根据ans的定义先初始化  
        for(i = 0; i<len; i++){  
            if(s1[i] == s2[i])ans[i] = ans[i-1];//如果对应位置相等,这个位置可以不刷  
            else{  
                for(j = 0; j<i; j++)ans[i] = min(ans[i],ans[j]+dp[j+1][i]);//寻找j来分割区间得到最优解  
            }  
        }  
        printf("%d\n",ans[len-1]);  
    }  
  
    return 0;  
}  


HDU 2476 区间dp,布布扣,bubuko.com

HDU 2476 区间dp

原文:http://blog.csdn.net/xianxingwuguan1/article/details/21055857

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!