supervisor通过调用sync-processes函数来启动worker,关于sync-processes函数的详细分析请参见"storm启动supervisor源码分析-supervisor.clj"。sync-processes函数代码片段如下:
sync-processes函数代码片段
;; sync-processes函数用于管理workers, 比如处理不正常的worker或dead worker, 并创建新的workers
;; supervisor标识supervisor的元数据
(defn sync-processes [supervisor]
                 .
             .
             .
               ;; 忽略了部分代码
               .
               .
               .
        (wait-for-workers-launch
             conf
             (dofor [[port assignment] reassign-executors]
               (let [id (new-worker-ids port)]
                 (log-message "Launching worker with assignment "
                              (pr-str assignment)
                              " for this supervisor "
                              (:supervisor-id supervisor)
                              " on port "
                              port
                              " with id "
                              id
                              )
                 ;; launch-worker函数负责启动worker              
                 (launch-worker supervisor
                                (:storm-id assignment)
                                port
                                id)
                 id)))
   ))
sync-processes函数调用launch-worker函数启动worker,launch-worker函数是一个"多重函数",定义如下:
宏defmulti和defmethod经常被用在一起来定义multimethod-"多重函数"。宏defmulti的参数包括一个方法名以及一个dispatch函数,这个dispatch函数的返回值会被用来选择到底调用哪个重载的函数。宏defmethod的参数则包括方法名,dispatch的值,参数列表以及方法体。一个特殊的dispatch值:default 是用来表示默认情况的—即如果其它的dispatch值都不匹配的话,那么就调用这个方法。defmethod定义名字相同的方法,它们的参数个数必须一样。传给multimethod的参数会传给dipatch函数。实现类似java的重载
launch-worker函数
(defmulti launch-worker (fn [supervisor & _] (cluster-mode (:conf supervisor))))
 
;; 如果dispatch函数的返回值为关键字:distributed,即storm集群运行在分布式模式下,则执行该方法
(defmethod launch-worker
    ;; supervisor标识supervisor的元数据,storm-id标识该worker所属的topology,port标识该worker占用的端口号,worker-id是一个32位的uuid,用于标识worker
    :distributed [supervisor storm-id port worker-id]
    ;; conf绑定集群配置信息
    (let [conf (:conf supervisor)
          ;; storm-home绑定storm本地安装路径
          storm-home (System/getProperty "storm.home")
          ;; storm-log-dir绑定日志路径
          storm-log-dir (or (System/getProperty "storm.log.dir") (str storm-home "/logs"))
          ;; stormroot绑定supervisor本地路径"{storm.local.dir}/supervisor/stormdist/{storm-id}"
          stormroot (supervisor-stormdist-root conf storm-id)
          ;; jlp绑定运行时所依赖的本地库的路径,jlp函数生成本地库路径,参见jlp函数定义部分
          jlp (jlp stormroot conf)
          ;; stormjar绑定stormjar.jar文件的路径"{storm.local.dir}/supervisor/stormdist/{storm-id}/stormjar.jar"
          stormjar (supervisor-stormjar-path stormroot)
          ;; storm-conf绑定集群配置信息和storm-id配置信息的并集
          storm-conf (read-supervisor-storm-conf conf storm-id)
          ;; topo-classpath绑定storm-id的classpath集合
          topo-classpath (if-let [cp (storm-conf TOPOLOGY-CLASSPATH)]
                           [cp]
                           [])
          ;; 将stormjar和topo-classpath所标识的路径添加到Java的classpath中                
          classpath (-> (current-classpath)
                        (add-to-classpath [stormjar])
                        (add-to-classpath topo-classpath))
          ;; 从集群配置信息中获取默认情况下supervisor启动worker的jvm参数               
          worker-childopts (when-let [s (conf WORKER-CHILDOPTS)]
                             (substitute-childopts s worker-id storm-id port))
          ;; 从topology的配置信息中获取为该topology的worker指定的jvm参数                 
          topo-worker-childopts (when-let [s (storm-conf TOPOLOGY-WORKER-CHILDOPTS)]
                                  (substitute-childopts s worker-id storm-id port))
          ;; 将该topology特有的依赖库路径合并到jlp中,这样topology-worker-environment绑定的map中就包含了启动该topology的worker所需的所有的依赖库                                  
          topology-worker-environment (if-let [env (storm-conf TOPOLOGY-ENVIRONMENT)]
                                        (merge env {"LD_LIBRARY_PATH" jlp})
                                        {"LD_LIBRARY_PATH" jlp})
          ;; 生成该worker的日志文件worker-{port}.log                              
          logfilename (str "worker-" port ".log")
          ;; command绑定一个Java -server xxxxxx -cp classpath classname arg_0 arg_1 ... arg_n命令,xxxxxx表示传递给java命令的jvm参数
          command (concat
                    [(java-cmd) "-server"]
                    worker-childopts
                    topo-worker-childopts
                    [(str "-Djava.library.path=" jlp)
                     (str "-Dlogfile.name=" logfilename)
                     (str "-Dstorm.home=" storm-home)
                     (str "-Dstorm.log.dir=" storm-log-dir)
                     (str "-Dlogback.configurationFile=" storm-home "/logback/cluster.xml")
                     (str "-Dstorm.id=" storm-id)
                     (str "-Dworker.id=" worker-id)
                     (str "-Dworker.port=" port)
                     "-cp" classpath
                     "backtype.storm.daemon.worker"
                     storm-id
                     (:assignment-id supervisor)
                     port
                     worker-id])
          ;; 去掉command命令数组中的空值
          command (->> command (map str) (filter (complement empty?)))
          ;; 获取command命令数组的字符串形式
          shell-cmd (->> command
                         (map #(str \‘ (clojure.string/escape % {\‘ "\\‘"}) \‘))
                         (clojure.string/join " "))]
      (log-message "Launching worker with command: " shell-cmd)
      ;; 通过ProcessBuilder类来执行command命令,即执行java命令运行backtype.storm.daemon.worker类的main方法创建一个新的进程,传递给main方法的参数为storm-id,supervisor-id,port和worker-id
      ;; 关于backtype.storm.daemon.worker类的main方法请参见其定义部分
      (launch-process command :environment topology-worker-environment)
      ))
;; 如果dispatch函数的返回值为关键字:local,即storm集群运行在本地模式下,则执行该方法      
(defmethod launch-worker
    :local [supervisor storm-id port worker-id]
    (let [conf (:conf supervisor)
          pid (uuid)
          worker (worker/mk-worker conf
                                   (:shared-context supervisor)
                                   storm-id
                                   (:assignment-id supervisor)
                                   port
                                   worker-id)]
      (psim/register-process pid worker)
      (swap! (:worker-thread-pids-atom supervisor) assoc worker-id pid)
      ))
jlp函数定义如下:
;; stormroot绑定supervisor本地路径"{storm.local.dir}/supervisor/stormdist/{storm-id}",conf绑定集群配置
(defn jlp [stormroot conf]
  ;; resource-root绑定supervisor本地路径"{storm.local.dir}/supervisor/stormdist/{storm-id}/resources"
  (let [resource-root (str stormroot File/separator RESOURCES-SUBDIR)
          ;; os绑定supervisor服务器的操作系统名
        os (clojure.string/replace (System/getProperty "os.name") #"\s+" "_")
        ;; arch绑定操作系统的架构,如"x86"和"i386"
        arch (System/getProperty "os.arch")
        ;; arch-resource-root绑定路径"{storm.local.dir}/supervisor/stormdist/{storm-id}/resources/{os}-{arch}"
        arch-resource-root (str resource-root File/separator os "-" arch)]
    ;; 返回"{storm.local.dir}/supervisor/stormdist/{storm-id}/resources/{os}-{arch}:{storm.local.dir}/supervisor/stormdist/{storm-id}/resources:{java.library.path}"
    (str arch-resource-root File/pathSeparator resource-root File/pathSeparator (conf JAVA-LIBRARY-PATH))))
read-supervisor-storm-conf函数定义如下:
;; 从supervisor本地路径"{storm.local.dir}/supervisor/stormdist/stormconf.ser"读取topology运行配置信息
(defn read-supervisor-storm-conf
  [conf storm-id]
  ;; stormroot绑定目录路径"{storm.local.dir}/supervisor/stormdist"
  (let [stormroot (supervisor-stormdist-root conf storm-id)
        ;; conf-path绑定文件路径"{storm.local.dir}/supervisor/stormdist/stormconf.ser"
        conf-path (supervisor-stormconf-path stormroot)
        ;; topology-path绑定文件路径"{storm.local.dir}/supervisor/stormdist/stormcode.ser"
        topology-path (supervisor-stormcode-path stormroot)]
    ;; 返回集群配置信息和topology配置信息合并后的配置信息map
    (merge conf (Utils/deserialize (FileUtils/readFileToByteArray (File. conf-path))))
    ))
backtype.storm.daemon.worker类定义在worker.clj文件中,通过:gen-class生成一个lava类,其main方法如下:
(defn -main [storm-id assignment-id port-str worker-id]  
  ;; 读取storm集群配置信息
  (let [conf (read-storm-config)]
    ;; 验证配置信息
    (validate-distributed-mode! conf)
    ;; 调用mk-worker函数,mk-worker函数请参见其定义部分
    (mk-worker conf nil storm-id assignment-id (Integer/parseInt port-str) worker-id)))
mk-worker函数:
;; conf绑定集群配置信息,shared-mq-context绑定共享mq,storm-id标识topology-id,assignment-id标识supervisor-id
(defserverfn mk-worker [conf shared-mq-context storm-id assignment-id port worker-id]
  (log-message "Launching worker for " storm-id " on " assignment-id ":" port " with id " worker-id
               " and conf " conf)
  ;; 如果storm不是"本地模式"运行(即"分布式模式"运行),则将标准输入输出流重定向到slf4j
  (if-not (local-mode? conf)
    (redirect-stdio-to-slf4j!))
  ;; because in local mode, its not a separate
  ;; process. supervisor will register it in this case
  ;; 如果storm是"分布式模式"运行,则在supervisor服务器本地创建文件"{storm.local.dir}/workers/{worker-id}/pids/{process-pid}",process-pid函数主要功能就是获取jvm进程的id
  ;; 需要特别注意的是worker-id是我们人为分配给该进程的一个标识,创建进程时,我们无法指定一个jvm进程的id,进程id是由操作系统分配的,所以我们需要获取该进程的实际id,并将我们指定的worker-id与进程id进行关联
  (when (= :distributed (cluster-mode conf))
    (touch (worker-pid-path conf worker-id (process-pid))))
  ;; worker绑定该进程的"元数据",worker-data函数的主要功能就是生成进程的"元数据",worker-data函数请参见其定义部分
  (let [worker (worker-data conf shared-mq-context storm-id assignment-id port worker-id)
              ;; heartbeat-fn绑定一个匿名函数,该匿名函数的功能就是生成worker"本地心跳信息",这里相当定义了heartbeat-fn函数,do-heartbeat函数请参见其定义部分
        heartbeat-fn #(do-heartbeat worker)
        ;; do this here so that the worker process dies if this fails
        ;; it‘s important that worker heartbeat to supervisor ASAP when launching so that the supervisor knows it‘s running (and can move on)
        ;; 调用heartbeat-fn函数将worker进程心跳信息保存到本地LocalState对象中
        _ (heartbeat-fn)
         ;; 定义一个原子类型的引用executors
        executors (atom nil)
        ;; launch heartbeat threads immediately so that slow-loading tasks don‘t cause the worker to timeout
        ;; to the supervisor
        ;; 将heartbeat-fn函数添加到定时器heartbeat-timer中,延迟执行时间为0s,每隔WORKER-HEARTBEAT-FREQUENCY-SECS执行一次
        _ (schedule-recurring (:heartbeat-timer worker) 0 (conf WORKER-HEARTBEAT-FREQUENCY-SECS) heartbeat-fn)
        ;; 将#(do-executor-heartbeats worker :executors @executors)函数添加到定时器executor-heartbeat-timer中,延迟执行时间为0s,每隔TASK-HEARTBEAT-FREQUENCY-SECS执行一次
        ;; 这样就可以将worker进程心跳信息同步到zookeeper中, 以便nimbus可以立刻知道worker进程已经启动,do-executor-heartbeats函数请参见其定义部分
        _ (schedule-recurring (:executor-heartbeat-timer worker) 0 (conf TASK-HEARTBEAT-FREQUENCY-SECS) #(do-executor-heartbeats worker :executors @executors))
        ;; 更新发送connections,mk-refresh-connections函数请参见其定义部分
        refresh-connections (mk-refresh-connections worker)
          ;; 主动调用refresh-connections函数refresh该worker进程所拥有的connections,并且不向zookeeper注册回调函数
        _ (refresh-connections nil)
          ;; 调用refresh-storm-active函数refresh该worker进程缓存的所属topology的活跃状态,refresh-storm-active函数请其参见定义部分
        _ (refresh-storm-active worker nil)
          ;; 调用mk-executor函数生成executor对象,保存到executors集合中。关于executor对象的创建将会在以后文章中具体分析
        _ (reset! executors (dofor [e (:executors worker)] (executor/mk-executor worker e)))
        ;; 启动worker进程专有的接收线程,将数据从worker进程的侦听端口,不停的放到task对应的接收队列,receive-thread-shutdown绑定该接收线程的关闭函数。launch-receive-thread函数请参见其定义部分
        receive-thread-shutdown (launch-receive-thread worker)
        
        ;; 定义event handler来处理transfer queue里面的数据。关于消息处理的流程会在以后文章中具体分析
        transfer-tuples (mk-transfer-tuples-handler worker)
        
        ;; 创建transfer-thread。关于消息处理的流程会在以后文章中具体分析
        transfer-thread (disruptor/consume-loop* (:transfer-queue worker) transfer-tuples)
        ;; 定义worker进程关闭回调函数,当关闭worker进程时调用该函数释放worker进程所占有的资源
        shutdown* (fn []
                    (log-message "Shutting down worker " storm-id " " assignment-id " " port)
                    ;; 关闭该worker进程到其他worker进程的连接
                    (doseq [[_ socket] @(:cached-node+port->socket worker)]
                      ;; this will do best effort flushing since the linger period
                      ;; was set on creation
                      (.close socket))
                    (log-message "Shutting down receive thread")
                    ;; 调用receive-thread-shutdown函数关闭该worker进程的接收线程
                    (receive-thread-shutdown)
                    (log-message "Shut down receive thread")
                    (log-message "Terminating messaging context")
                    (log-message "Shutting down executors")
                    ;; 关闭该worker进程所拥有的executor
                    (doseq [executor @executors] (.shutdown executor))
                    (log-message "Shut down executors")
                                        
                    ;;this is fine because the only time this is shared is when it‘s a local context,
                    ;;in which case it‘s a noop
                    ;; 关闭该worker进程所拥有的backtype.storm.messaging.netty.Context实例
                    (.term ^IContext (:mq-context worker))
                    (log-message "Shutting down transfer thread")
                    ;; 关闭transfer-queue
                    (disruptor/halt-with-interrupt! (:transfer-queue worker))
                                        ;; 中断transfer-thread
                    (.interrupt transfer-thread)
                    ;; 等待transfer-thread结束
                    (.join transfer-thread)
                    (log-message "Shut down transfer thread")
                    ;; 调用cancel-timer函数中断heartbeat-timer定时器线程
                    (cancel-timer (:heartbeat-timer worker))
                    ;; 调用cancel-timer函数中断refresh-connections-timer定时器线程
                    (cancel-timer (:refresh-connections-timer worker))
                    ;; 调用cancel-timer函数中断refresh-active-timer定时器线程
                    (cancel-timer (:refresh-active-timer worker))
                    ;; 调用cancel-timer函数中断executor-heartbeat-timer定时器线程
                    (cancel-timer (:executor-heartbeat-timer worker))
                    ;; 调用cancel-timer函数中断user-timer定时器线程
                    (cancel-timer (:user-timer worker))
                    
                    ;; 关闭该worker进程所拥有的线程池
                    (close-resources worker)
                    
                    ;; TODO: here need to invoke the "shutdown" method of WorkerHook
                    
                    ;; 调用StormClusterState实例的remove-worker-heartbeat!函数从zookeeper上删除worker心跳信息
                    (.remove-worker-heartbeat! (:storm-cluster-state worker) storm-id assignment-id port)
                    (log-message "Disconnecting from storm cluster state context")
                    ;; 关闭zookeeper连接
                    (.disconnect (:storm-cluster-state worker))
                    (.close (:cluster-state worker))
                    (log-message "Shut down worker " storm-id " " assignment-id " " port))
        ;; ret实现了Shutdownable和DaemonCommon协议
        ret (reify
             Shutdownable
             (shutdown
              [this]
              (shutdown*))
             DaemonCommon
             (waiting? [this]
               (and
                 (timer-waiting? (:heartbeat-timer worker))
                 (timer-waiting? (:refresh-connections-timer worker))
                 (timer-waiting? (:refresh-active-timer worker))
                 (timer-waiting? (:executor-heartbeat-timer worker))
                 (timer-waiting? (:user-timer worker))
                 ))
             )]
    
    ;; 将refresh-connections函数添加到定时器refresh-connections-timer中,每隔TASK-REFRESH-POLL-SECS执行一次。refresh-connections函数的无参版本提供一个默认回调函数调用其有参版本来更新所属           worker进程所拥有的collections,默认回调函数就是再次将refresh-connections函数无参版本添加到定时器refresh-connections-timer中
    ;; 这样只要zookeeper上分配信息发生变化,refresh-connections函数的有参版本就会执行,这里之所以周期执行refresh-connections函数是以防zookeeper的"watcher机制"失效
    (schedule-recurring (:refresh-connections-timer worker) 0 (conf TASK-REFRESH-POLL-SECS) refresh-connections)
    ;; 将函数(partial refresh-storm-active worker)添加到定时器refresh-active-timer中,每隔TASK-REFRESH-POLL-SECS执行一次。refresh-storm-active函数的执行逻辑与refresh-connections函数完全相      同
    (schedule-recurring (:refresh-active-timer worker) 0 (conf TASK-REFRESH-POLL-SECS) (partial refresh-storm-active worker))
    (log-message "Worker has topology config " (:storm-conf worker))
    (log-message "Worker " worker-id " for storm " storm-id " on " assignment-id ":" port " has finished loading")
    ;; 返回实现了Shutdownable协议和DaemonCommon协议的实例ret,通过ret我们可以关闭worker进程
    ret
    ))
worker-data函数:
;; worker-data函数生成进程的"元数据"
(defn worker-data [conf mq-context storm-id assignment-id port worker-id]
  ;; 为该进程生成ClusterState实例
  (let [cluster-state (cluster/mk-distributed-cluster-state conf)
        ;; 为该进程生成StormClusterState实例,这样进程就可以通过StormClusterState与zookeeper进行交互了
        storm-cluster-state (cluster/mk-storm-cluster-state cluster-state)
        ;; 调用read-supervisor-storm-conf函数读取storm-id的配置信息,read-supervisor-storm-conf函数请参见其定义部分
        storm-conf (read-supervisor-storm-conf conf storm-id)
        ;; executors绑定分配给该进程的executor的id集合,包含system executor的id
        executors (set (read-worker-executors storm-conf storm-cluster-state storm-id assignment-id port))
        ;; 进程内executor间通信是通过disruptor实现的,所以这里为该worker创建了一个名为"worker-transfer-queue"的disruptor queue,关于disruptor的内容会在以后详细介绍
        ;; 注意transfer-queue是worker相关的,与executor无关
        transfer-queue (disruptor/disruptor-queue "worker-transfer-queue" (storm-conf TOPOLOGY-TRANSFER-BUFFER-SIZE)
                                                  :wait-strategy (storm-conf TOPOLOGY-DISRUPTOR-WAIT-STRATEGY))
        ;; mk-receive-queue-map函数为每个executor创建一个名为"receive-queue{executor-id}"的disruptor queue,executor-receive-queue-map绑定executor-id->"disruptor接收queue"的map   
        ;; 注意executor-receive-queue-map是executor相关,与worker无关                                     
        executor-receive-queue-map (mk-receive-queue-map storm-conf executors)
        ;; executor可能有多个tasks,相同executor的tasks共用一个"disruptor接收queue",将executor-id->"disruptor接收queue"的map转化为task-id->"disruptor接收queue"的map,
        ;; 如executor-receive-queue-map={[1 2] receive-queue[1 2], [3 4] receive-queue[3 4]},那么receive-queue-map={1 receive-queue[1 2], 2 receive-queue[1 2], 3 receive-queue[3             4], 4 receive-queue[3 4]}
        receive-queue-map (->> executor-receive-queue-map
                               (mapcat (fn [[e queue]] (for [t (executor-id->tasks e)] [t queue])))
                               (into {}))
                ;; 调用read-supervisor-topology函数从supervisor本地路径"{storm.local.dir}/supervisor/stormdist/stormcode.ser"读取topology对象的序列化文件
        topology (read-supervisor-topology conf storm-id)]
    ;; recursive-map宏会将下面value都执行一遍,用返回值和key生成新的map作为worker的"元数据",recursive-map宏见其定义部分
    (recursive-map
      ;; 保存集群配置信息
      :conf conf
      ;; 保存一个传输层实例用于worker进程间消息传递,storm传输层被定义成了"可插拔式"插件,通过实现backtype.storm.messaging.IContext接口就可以定义自己的消息传输层。storm 0.8.x默认传输层实例是             backtype.storm.messaging.zmq,但是由于
      ;; 1.ZeroMQ是一个本地化的消息库,它过度依赖操作系统环境,而且ZeroMQ使用的是"堆外内存",无法使用jvm相关的内存监控工具进行监控管理,存在"堆外内存"泄漏风险
      ;; 2.安装起来比较麻烦
      ;; 3.ZeroMQ的稳定性在不同版本之间差异巨大,并且目前只有2.1.7版本的ZeroMQ能与Storm协调的工作。
      ;; 所以storm 0.9之后默认传出层实例为backtype.storm.messaging.netty.Context,Netty有如下优点:
     ;; 1.平台隔离,Netty是一个纯Java实现的消息队列,可以帮助Storm实现更好的跨平台特性,同时基于JVM的实现可以让我们对消息有更好的控制,因为Netty使用jvm的堆内存,而不是堆外内存
      ;; 2.高性能,Netty的性能要比ZeroMQ快两倍左右
      ;; 3. 安全性认证,使得我们将来要做的worker进程之间的认证授权机制成为可能。
      :mq-context (if mq-context
                      mq-context
                      (TransportFactory/makeContext storm-conf))
      ;; 记录所属storm-id
      :storm-id storm-id
      ;; 记录所属supervisor-id
      :assignment-id assignment-id
      ;; 记录端口
      :port port
      ;; 记录我们分配给该进程的worker-id
      :worker-id worker-id
      ;; 记录ClusterState实例
      :cluster-state cluster-state
      ;; 记录StormClusterState实例,以便worker进程与zookeeper进行交互
      :storm-cluster-state storm-cluster-state
      ;; 记录topology的当前活跃状态为false
      :storm-active-atom (atom false)
      ;; 记录分布在该worker进程上的executors的id
      :executors executors
      ;; 记录排序后的分布在该worker进程上的tasks的id
      :task-ids (->> receive-queue-map keys (map int) sort)
      ;; 记录该topology的配置信息
      :storm-conf storm-conf
      ;; 记录topology实例
      :topology topology
      ;; 记录添加了acker,system bolt,metric bolt后的topology实例
      :system-topology (system-topology! storm-conf topology)
      ;; 记录一个名为"heartbeat-timer"的定时器
      :heartbeat-timer (mk-halting-timer "heartbeat-timer")
      ;; 记录一个名为"refresh-connections-timer"的定时器
      :refresh-connections-timer (mk-halting-timer "refresh-connections-timer")
      ;; 记录一个名为"refresh-active-timer"的定时器
      :refresh-active-timer (mk-halting-timer "refresh-active-timer")
      ;; 记录一个名为"executor-heartbeat-timer"的定时器
      :executor-heartbeat-timer (mk-halting-timer "executor-heartbeat-timer")
      ;; 记录一个名为"user-timer"的定时器
      :user-timer (mk-halting-timer "user-timer")
      ;; 记录任务id->组件名称键值对的map,形如:{1 "boltA", 2 "boltA", 3 "boltA", 4 "boltA", 5 "boltB", 6 "boltB"},storm-task-info函数请参见其定义部分
      :task->component (HashMap. (storm-task-info topology storm-conf)) ; for optimized access when used in tasks later on
      ;; 记录"组件名称"->"stream_id->输出域Fields对象的map"的map,component->stream->fields函数请参见其定义部分
      :component->stream->fields (component->stream->fields (:system-topology <>))
      ;; 记录"组件名称"->排序后task-id集合的map,形如:{"boltA" [1 2 3 4], "boltB" [5 6]}
      :component->sorted-tasks (->> (:task->component <>) reverse-map (map-val sort))
      ;; 记录一个ReentrantReadWriteLock对象
      :endpoint-socket-lock (mk-rw-lock)
      ;; 记录一个node+port->socket的原子类型的map
      :cached-node+port->socket (atom {})
      ;; 记录一个task->node+port的原子类型的map
      :cached-task->node+port (atom {})
      ;; 记录该worker进程的传输队列transfer-queue
      :transfer-queue transfer-queue
      ;; 记录executor接收队列executor-receive-queue-map
      :executor-receive-queue-map executor-receive-queue-map
      ;; 记录executor中"开始任务id"->executor接收queue的map,如executor-receive-queue-map={[1 2] receive-queue[1 2], [3 4] receive-queue[3 4]},那么short-executor-receive-queue-map={1 receive-queue[1 2], 3 receive-queue[3 4]}
      :short-executor-receive-queue-map (map-key first executor-receive-queue-map)
      ;; 记录task_id->executor中"开始任务id"的map,如executors=#{[1 2] [3 4] [5 6]},task->short-executor={1 1, 2 1, 3 3, 4 3, 5 5, 6 5}
      :task->short-executor (->> executors
                                 (mapcat (fn [e] (for [t (executor-id->tasks e)] [t (first e)])))
                                 (into {})
                                 (HashMap.))
      ;; 记录一个可以终止该worker进程的"自杀函数"
      :suicide-fn (mk-suicide-fn conf)
      ;; 记录一个可以计算该worker进程启动了多长时间的函数
      :uptime (uptime-computer)
      ;; 为该worker进程生成一个线程池
      :default-shared-resources (mk-default-resources <>)
      ;; mk-user-resources函数目前版本为空实现
      :user-shared-resources (mk-user-resources <>)
      ;; 记录一个函数,该函数的主要功能就是接收messages并将message发送到task对应的接收队列,mk-transfer-local-fn函数请参见其定义部分
      :transfer-local-fn (mk-transfer-local-fn <>)
      ;; 记录每个worker进程特有的接收线程的个数
      :receiver-thread-count (get storm-conf WORKER-RECEIVER-THREAD-COUNT)
      ;; 将executor处理过的message放到worker进程发送队列transfer-queue中,mk-transfer-fn函数请参见其定义部分
      :transfer-fn ( <>)
      )))
read-worker-executors函数:
;; read-worker-executors函数用于读取分布在该进程上的executor信息
(defn read-worker-executors [storm-conf storm-cluster-state storm-id assignment-id port]
  ;; assignment绑定executor->node+port的map,调用StormClusterState实例的assignment-info函数从zookeeper上读取storm-id的分配信息AssignmentInfo实例
  ;; AssignmentInfo定义如下:(defrecord Assignment [master-code-dir node->host executor->node+port executor->start-time-secs])
  (let [assignment (:executor->node+port (.assignment-info storm-cluster-state storm-id nil))]
    ;; 返回分配给该进程的executor的id集合,包含system executor的id
    (doall
     ;; 将system executor的id和topology executor的id合并
     (concat
      ;; system executor的id,[-1 -1]     
      [Constants/SYSTEM_EXECUTOR_ID]
      ;; 从分配信息assignment中获取分配给该进程的executor
      (mapcat (fn [[executor loc]]
                (if (= loc [assignment-id port])
                  [executor]
                  ))
              assignment)))))
mk-receive-queue-map函数:
;; mk-receive-queue-map函数为每个executor创建一个名为"receive-queue{executor-id}"的disruptor queue,如"receive-queue[1 3]",并返回executor-id->receive-queue的map
(defn- mk-receive-queue-map [storm-conf executors]
  ;; executors标识了executor-id集合
  (->> executors
       ;; TODO: this depends on the type of executor
       ;; 通过调用map函数为每个executor-id创建一个"disruptor接收queue"
       (map (fn [e] [e (disruptor/disruptor-queue (str "receive-queue" e)
                                                  (storm-conf TOPOLOGY-EXECUTOR-RECEIVE-BUFFER-SIZE)
                                                  :wait-strategy (storm-conf TOPOLOGY-DISRUPTOR-WAIT-STRATEGY))]))
       ;; 返回executor-id->receive-queue的map                                           
       (into {})
       ))
storm-task-info函数:
(defn storm-task-info
  "Returns map from task -> component id"
  [^StormTopology user-topology storm-conf]
  (->> (system-topology! storm-conf user-topology)
       ;; 获取组件名称->组件对象键值对的map
       all-components
       ;; 返回组件名称->组件任务数键值对的map,如{"boltA" 4, "boltB" 2}
       (map-val (comp #(get % TOPOLOGY-TASKS) component-conf))
       ;; 按照组件名称对map进行排序返回结果序列,如(["boltA" 4] ["boltB" 2])
       (sort-by first)
       ;; mapcat函数等价于对(map (fn...))的返回结果执行concat函数,返回("boltA" "boltA" "boltA" "boltA" "boltB" "boltB")
       (mapcat (fn [[c num-tasks]] (repeat num-tasks c)))
       ;; {1 "boltA", 2 "boltA",3 "boltA", 4 "boltA", 5 "boltB", 6 "boltB"}
       (map (fn [id comp] [id comp]) (iterate (comp int inc) (int 1)))
       (into {})
       ))
component->stream->fields函数:
(defn component->stream->fields [^StormTopology topology]
  ;; 调用ThriftTopologyUtils/getComponentIds方法获取topology所有组件名称集合,如#{"boltA", "boltB", "boltC"}
  (->> (ThriftTopologyUtils/getComponentIds topology)
           ;; 获取每个组件的stream_id->StreamInfo对象的map,stream->fields函数请参见其定义部分
       (map (fn [c] [c (stream->fields topology c)]))
       ;; 生成"组件名称"->"stream_id->输出域Fields对象的map"的map
       (into {})
       ;; 将其转化成Java的HashMap
       (HashMap.)))
stream->fields函数:
(defn- stream->fields [^StormTopology topology component]
  ;; 获取指定组件名的ComponentCommon对象
  (->> (ThriftTopologyUtils/getComponentCommon topology component)
         ;; 调用ComponentCommon对象的get_streams方法获取stream_id->StreamInfo对象的map,一个组件可以有多个输出流
       .get_streams
       ;; s绑定stream_id,info绑定StremInfo对象,调用StreamInfo对象的get_output_fields获取输出域List<String>对象,再用输出域List<String>对象生成Fields对象
       (map (fn [[s info]] [s (Fields. (.get_output_fields info))]))
       ;; 生成stream_id->Fields对象的map
       (into {})
       ;; 将clojure结构的map转换成java中的HashMap
       (HashMap.)))
mk-transfer-local-fn函数:
;; mk-transfer-local-fn函数返回一个匿名函数,该匿名函数的主要功能就是接收messages并将message发送到task对应的接收队列    
(defn mk-transfer-local-fn [worker]
  ;; short-executor-receive-queue-map绑定"开始任务id"->executor接收queue的map,如:{1 receive-queue[1 2], 3 receive-queue[3 4]}
  (let [short-executor-receive-queue-map (:short-executor-receive-queue-map worker)
        ;; task->short-executor绑定task_id->executor中"开始任务id"的map,如:{1 1, 2 1, 3 3, 4 3}
        task->short-executor (:task->short-executor worker)
        ;; task-getter绑定一个由comp生成的组合函数
        task-getter (comp #(get task->short-executor %) fast-first)]
    ;; 返回一个匿名函数,tuple-batch是一个ArrayList对象,ArrayList的每个元素都是一个长度为2的数组[task_id, message],task_id表示该消息由哪个task处理,message表示消息
    (fn [tuple-batch]
      ;; 调用fast-group-by函数获取"executor简写id"->需要该executor处理的消息List的map
      (let [grouped (fast-group-by task-getter tuple-batch)]
        ;; fast-map-iters宏主要用于遍历map,short-executor标识"executor简写id",pairs标识消息[task_id, message]
        (fast-map-iter [[short-executor pairs] grouped]
          ;; 获取该executor的接收queue
          (let [q (short-executor-receive-queue-map short-executor)]
            ;; 如果q不为空,则调用disruptor的publish方法将消息放入disruptor中
            (if q
              (disruptor/publish q pairs)
              (log-warn "Received invalid messages for unknown tasks. Dropping... ")
              )))))))
fast-group-by函数:
;; fast-group-by函数的主要功能就是生成"executor简写id"->需要该executor处理的消息List的map            
(defn fast-group-by
  ;; afn绑定mk-transfer-local-fn函数中定义的task-getter函数,alist绑定一个ArrayList对象,ArrayList的每个元素都是一个长度为2的数组[task_id, message],task_id表示该消息由哪个task处理,message表示消息
  [afn alist]
  ;; 创建一个HashMap对象ret
  (let [ret (HashMap.)]
    ;; fast-list-iter是一个宏,主要功能就是遍历list
    (fast-list-iter
      ;; e绑定每个[task_id, message]数组对象
      [e alist]
      ;; 调用afn绑定的task-getter函数获取该task_id所属的"executor的简写id",所以key绑定"executor简写id"
      (let [key (afn e)
               ;; 从ret中获取key所对应的ArrayList对象,即需要该executor处理的消息列表
            ^List curr (get-with-default ret key (ArrayList.))]
        ;; [task_id, message]数组对象添加到list中
        (.add curr e)))
    ;; 返回ret
    ret))
mk-transfer-fn函数:
;; mk-transfer-fn函数主要功能就是将executor处理过的message放到worker进程发送队列transfer-queue中
(defn mk-transfer-fn [worker]
  ;; local-tasks绑定分布在该worker进程上的task的id集合
  (let [local-tasks (-> worker :task-ids set)
        ;; local-transfer标识mk-transfer-local-fn返回的匿名函数
        local-transfer (:transfer-local-fn worker)
        ;; transfer-queue绑定该worker进程的传输队列transfer-queue
        ^DisruptorQueue transfer-queue (:transfer-queue worker)
        ;; task->node+port绑定task_id->node+port的map
        task->node+port (:cached-task->node+port worker)]
    ;; 返回一个匿名函数,serializer标识一个Kryo序列化器,tuple-batch是一个ArrayList对象,ArrayList的每个元素都是一个长度为2的数组[task_id, message],task_id表示该消息由哪个task处理,即message的目标task,message表示消息
    (fn [^KryoTupleSerializer serializer tuple-batch]
      ;; local为ArrayList
      (let [local (ArrayList.)
            ;; remoteMap为HashMap
            remoteMap (HashMap.)]
        ;; 遍历tuple-batch
        (fast-list-iter [[task tuple :as pair] tuple-batch]
          ;; 如果接收该消息的task为本地task,即该task也分布在该worker进程上,那么将该消息添加到local中
          (if (local-tasks task)
            (.add local pair)
            
            ;;Using java objects directly to avoid performance issues in java code
            ;; 否则说明接收该消息的task不是本地task,即该task分布在其他worker进程上;node+port标识了运行该task的worker进程所在的节点和端口
            (let [node+port (get @task->node+port task)]
              ;; 如果remoteMap不包含node+port,则添加
              (when (not (.get remoteMap node+port))
                (.put remoteMap node+port (ArrayList.)))
              (let [remote (.get remoteMap node+port)]
                ;; 首先用task_id和序列化后的tuple生成TaskMessage对象,然后将TaskMessage对象添加到ArrayList中
                (.add remote (TaskMessage. task (.serialize serializer tuple)))
                 ))))
        ;; 调用local-transfer函数发送需要本地task处理的消息
        (local-transfer local)
        ;; 调用disruptor的publish方法将remoteMap放入worker进程的传输队列transfer-queue中,remoteMap的key为node+port,value为ArrayList,ArrayList中每个元素都是需要node+port所对应的worker进行处理
        (disruptor/publish transfer-queue remoteMap)
          ))))
do-heartbeat函数:
(defn do-heartbeat [worker]
  ;; 获取集群配置信息
  (let [conf (:conf worker)
        ;; 创建WorkerHeartbeat对象
        hb (WorkerHeartbeat.
             ;; 本次心跳时间
             (current-time-secs)
             ;; 该worker进程所属的topology-id
             (:storm-id worker)
             ;; 分布在该worker进程上的executor-id集合
             (:executors worker)
             ;; 该worker进程所占用的端口
             (:port worker))
        ;; 创建一个基于目录"{storm.local.dir}/workers/{worker-id}/heartbeats"的LocalState对象,用于存放worker进程的"本地心跳信息",通过LocalState对象我们可以访问一个序列化到磁盘的map对象
        state (worker-state conf (:worker-id worker))]
    (log-debug "Doing heartbeat " (pr-str hb))
    ;; do the local-file-system heartbeat.
    ;; 将worker进程心跳信息通过LocalState对象存入磁盘,map对象的key为"worker-heartbeat"字符串,value为worker心跳信息
    (.put state
        LS-WORKER-HEARTBEAT
        hb
        false
        )
    ;; 调用LocalState对象的clearup方法,只保留最近60次心跳信息
    (.cleanup state 60) ; this is just in case supervisor is down so that disk doesn‘t fill up.
                         ; it shouldn‘t take supervisor 120 seconds between listing dir and reading it
    ))
do-executor-heartbeats函数:
;; do-executor-heartbeats函数主要功能就是通过worker-heartbeat!函数将worker进程心跳信息写入zookeeper的workerbeats节点中
(defnk do-executor-heartbeats [worker :executors nil]
  ;; stats is how we know what executors are assigned to this worker 
  ;; stats绑定executor对象->executor统计信息的map。当第一次调用do-executor-heartbeats函数时,即第一次心跳时,executors为nil,map形如:{executor_1 nil, executor_2 nil, ... }
  ;; 当再次心跳时,将会调用executor对象的get-executor-id函数和render-stats函数,获取executor_id->executor统计信息的map,所以stats绑定的map在第一次心跳时和再次心跳时是不同的,有关executor统计信  息的计算会在以后文章中具体分析。
  (let [stats (if-not executors
                  (into {} (map (fn [e] {e nil}) (:executors worker)))
                  (->> executors
                    (map (fn [e] {(executor/get-executor-id e) (executor/render-stats e)}))
                    (apply merge)))
        ;; 构建worker进程的心跳信息
        zk-hb {:storm-id (:storm-id worker)
               ;; 记录executor统计信息
               :executor-stats stats
               ;; 记录worker进程运行了多次时间
               :uptime ((:uptime worker))
               ;; 记录worker进程心跳时间
               :time-secs (current-time-secs)
               }]
    ;; do the zookeeper heartbeat
    ;; 调用StormClusterState对象的worker-heartbeat!函数将worker进程心跳信息zk-hb同步到zookeeper的"/workerbeats/{topology-id}/{supervisorId-port}/"节点中
    (.worker-heartbeat! (:storm-cluster-state worker) (:storm-id worker) (:assignment-id worker) (:port worker) zk-hb)    
    ))
mk-refresh-connections函数:
;; mk-refresh-connections函数返回一个名为this的函数,在"storm启动supervisor源码分析-supervisor.clj"中,我们在mk-synchronize-supervisor函数也见过这种定义函数的方式,是因为这个函数本身要在函数体内被使用。
;; 并且refresh-connections是需要反复被执行的,即当每次assignment-info发生变化的时候,就需要refresh一次,这里是通过zookeeper的"watcher机制"实现的
(defn mk-refresh-connections [worker]
  ;; outbound-tasks绑定用于接收该worker进程输出消息的所有任务,worker-outbound-tasks函数请参见其定义部分
  (let [outbound-tasks (worker-outbound-tasks worker)
        ;; conf绑定worker配置信息
        conf (:conf worker)
        ;; storm-cluster-state绑定StormClusterState实例
        storm-cluster-state (:storm-cluster-state worker)
        ;; storm-id标识该worker进程所属的topology的id
        storm-id (:storm-id worker)]
    ;; 返回名称为this的函数,每次assignment-info发生变化时,就执行一次来refresh该worker进程的connections
    (fn this
      ;; 无参版本,提供一个"默认回调函数"调用有参版本,"默认回调函数"就是将this函数无参版本本身添加到worker进程的refresh-connections-timer定时器中,这样当assignment-info发生变化时,zookeeper的"watcher机制"
      ;; 就会执行回调函数,refresh-connections-timer定时器线程将会执行this函数。这样就可以保证,每次assignment发生变化,定时器都会在后台做refresh-connections的操作
      ([]
        (this (fn [& ignored] (schedule (:refresh-connections-timer worker) 0 this))))
      ;; 有参版本
      ([callback]
         ;; 调用StormClusterState实例的assignment-version函数获取storm-id的当前分配信息版本,并将callback函数注册到zookeeper
         (let [version (.assignment-version storm-cluster-state storm-id callback)
               ;; 如果worker本地缓存的分配版本和zookeeper上获取的分配版本相等,那么说明storm-id的分配信息未发生变化,直接从worker本地获取分配信息
               assignment (if (= version (:version (get @(:assignment-versions worker) storm-id)))
                            (:data (get @(:assignment-versions worker) storm-id))
                            ;; 否则调用assignment-info-with-version函数从zookeeper的"/assignments/{storm-id}"节点重新获取带有版本号的分配信息,并注册回调函数,这样worker就能感知某个已存在的assignment是否被重新分配
                            (let [new-assignment (.assignment-info-with-version storm-cluster-state storm-id callback)]
                              ;; 将最近分配信息保存到worker本地缓存
                              (swap! (:assignment-versions worker) assoc storm-id new-assignment)
                              (:data new-assignment)))
              ;; my-assignment标识"接收该worker进程输出消息的任务"->[node port]的map
              my-assignment (-> assignment
                                                  ;; 获取executor_id->[node port]的map,如:{[1 1] [node1 port1], [4 4] [node1 port1], [2 2] [node2 port1], [5 5] [node2 port1], [3 3] [node3 port1], [6 6] [node3 port1]}
                                :executor->node+port
                                ;; 获取task_id->[node port]的map,如:{[1 [node1 port1], 4 [node1 port1], 2 [node2 port1], 5 [node2 port1], 3 [node3 port1], 6 [node3 port1]}
                                to-task->node+port
                                ;; 选择"键"包含在outbound-tasks集合的键值对,假设outbound-tasks=#{4 5 6},过滤后为{4 [node1 port1], 5 [node2 port1], 6 [node3 port1]}
                                (select-keys outbound-tasks)
                                ;; {4 "node1/port1", 5 "node2/port1", 6 "node3/port1"}
                                (#(map-val endpoint->string %)))
              ;; we dont need a connection for the local tasks anymore
              ;; 过滤掉分布在该worker进程上的task,因为分布在通一个进程上不需要建立socket连接。假设该worker进程位于node1的port1上,则needed-assignment={5 "node2/port1", 6 "node3/port1"}
              needed-assignment (->> my-assignment
                                      (filter-key (complement (-> worker :task-ids set))))
              ;; needed-connections绑定"需要的连接"的集合,needed-connections=#{"node2/port1", "node3/port1"}
              needed-connections (-> needed-assignment vals set)
              ;; needed-tasks绑定需要建立连接的任务集合,needed-tasks=#{5, 6}
              needed-tasks (-> needed-assignment keys)
              
              ;; current-connections绑定当前该worker进程"已建立的连接"的集合
              current-connections (set (keys @(:cached-node+port->socket worker)))
              ;; needed-connections和current-connections的差集表示需要"新建的连接"的集合,假设current-connections=#{},则new-connections=#{"node2/port1", "node3/port1"}
              new-connections (set/difference needed-connections current-connections)
              ;; current-connections和needed-connections的差集表示需要"删除的连接"的集合
              remove-connections (set/difference current-connections needed-connections)]
              ;; 将新建的连接合并到cached-node+port->socket中
              (swap! (:cached-node+port->socket worker)
                     #(HashMap. (merge (into {} %1) %2))
                     ;; 创建endpoint-str->connection对象的map,即建立新的连接。如:{"node2/port1" connect1, "node3/port1" connect2}
                     (into {}
                       (dofor [endpoint-str new-connections
                               :let [[node port] (string->endpoint endpoint-str)]]
                         [endpoint-str
                          (.connect
                           ^IContext (:mq-context worker)
                           storm-id
                           ((:node->host assignment) node)
                           port)
                          ]
                         )))
              ;; 将my-assignment保存到worker进程本地缓存cached-task->node+port中
              (write-locked (:endpoint-socket-lock worker)
                (reset! (:cached-task->node+port worker)
                        (HashMap. my-assignment)))
              ;; close需要"删除的连接"
              (doseq [endpoint remove-connections]
                (.close (get @(:cached-node+port->socket worker) endpoint)))
              ;; 将需要"删除的连接"从worker进程本地缓存cached-node+port->socket中删除,通过worker进程本地缓存cached-task->node+port和cached-node+port->socket,我们就可以或得task和socket的对应关系
              (apply swap!
                     (:cached-node+port->socket worker)
                     #(HashMap. (apply dissoc (into {} %1) %&))
                     remove-connections)
              ;; 查找出未建立连接的task
              (let [missing-tasks (->> needed-tasks
                                       (filter (complement my-assignment)))]
                ;; 如果存在未建立连接的task,则记录日志文件
                (when-not (empty? missing-tasks)
                  (log-warn "Missing assignment for following tasks: " (pr-str missing-tasks))
                  )))))))
worker-outbound-tasks函数:
;; worker-outbound-tasks函数主要功能就是获取接收来自该worker消息的组件的task-id集合                
(defn worker-outbound-tasks
  "Returns seq of task-ids that receive messages from this worker"
  [worker]
  ;; context绑定backtype.storm.task.WorkerTopologyContext对象,worker-context函数请参见其定义部分
  (let [context (worker-context worker)
        ;; 对分布在该worker进程上的每个任务的task_id调用匿名函数(fn [task-id] ... ),并对返回结果进行concat操作,components绑定了接收组件id的集合
        components (mapcat
                     (fn [task-id]
                       ;; 调用context的getComponentId方法获取该task-id所属的组件(spout/bolt)的名称
                       (->> (.getComponentId context (int task-id))
                            ;; 调用context的getTargets方法,获取哪些组件接收了componentId输出的消息
                            (.getTargets context)
                            vals
                            ;; 获取接收组件id的集合
                            (map keys)
                            (apply concat)))
                     ;; 获取分布在该worker进程上的task_id集合
                     (:task-ids worker))]
    (-> worker
        ;; 获取任务id->组件名称键值对的map,形如:{1 "boltA", 2 "boltA", 3 "boltA", 4 "boltA", 5 "boltB", 6 "boltB"}
        :task->component
        ;; 结果形如:{"boltA" [1 2 3 4], "boltB" [5 6]}
        reverse-map
        ;; 过滤出"键"包含在components集合中的键值对
        (select-keys components)
        vals
        flatten
        ;; 获取接收组件所有任务的id的集合
        set )))
worker-context函数:
(defn worker-context [worker]
  ;; 返回backtype.storm.task.WorkerTopologyContext对象
  (WorkerTopologyContext. (:system-topology worker)
                          (:storm-conf worker)
                          (:task->component worker)
                          (:component->sorted-tasks worker)
                          (:component->stream->fields worker)
                          (:storm-id worker)
                          (supervisor-storm-resources-path
                            (supervisor-stormdist-root (:conf worker) (:storm-id worker)))
                          (worker-pids-root (:conf worker) (:worker-id worker))
                          (:port worker)
                          (:task-ids worker)
                          (:default-shared-resources worker)
                          (:user-shared-resources worker)
                          ))
getTargets方法:
;; WorkerTopologyContext类继承GeneralTopologyContext类,getTargets方法是GeneralTopologyContext类实例方法,主要功能就是获取哪些组件接收了componentId输出的消息
;; 返回值为一个stream_id->{receive_component_id->Grouping}的map,receive_component_id就是接收组件的id              
public Map<String, Map<String, Grouping>> getTargets(String componentId) {
        ;; 创建返回结果map,ret
        Map<String, Map<String, Grouping>> ret = new HashMap<String, Map<String, Grouping>>();
        ;; 获取该topology的所有组件ids,并遍历
        for(String otherComponentId: getComponentIds()) {
            ;; 通过组件id获取组件的ComponentCommon对象,然后再获取其输入信息inputs
            Map<GlobalStreamId, Grouping> inputs = getComponentCommon(otherComponentId).get_inputs();
            ;; 遍历输入信息,GlobalStreamId对象有两个成员属性,一个是流id,一个是发送该流的组件id
            for(GlobalStreamId id: inputs.keySet()) {
                ;; 如果输入流的组件id和componentId相等,那么说明该组件接收来自componentId的输出,则将其添加到ret中
                if(id.get_componentId().equals(componentId)) {
                    Map<String, Grouping> curr = ret.get(id.get_streamId());
                    if(curr==null) curr = new HashMap<String, Grouping>();
                    curr.put(otherComponentId, inputs.get(id));
                    ret.put(id.get_streamId(), curr);
                }
            }
        }
        return ret;
    }
refresh-storm-active函数:
;; refresh-storm-active函数主要功能就是refresh指定worker进程缓存的所属topology的活跃状态                
(defn refresh-storm-active
  ;; "无回调函数"版本,使用默认回调函数调用"有回调函数"版本,默认回调函数将refresh-storm-active函数本身添加到refresh-active-timer定时器
  ([worker]
    (refresh-storm-active worker (fn [& ignored] (schedule (:refresh-active-timer worker) 0 (partial refresh-storm-active worker)))))
  ;; "有回调函数"版本
  ([worker callback]
    ;; 调用StormClusterState实例的storm-base函数,从zookeeper的"/storms/{storm-id}"节点获取该topology的StormBase数据,并将回调函数callback注册到zookeeper的"/storms/{storm-id}"节点
    ;; 这样当该节点数据发生变化时,callback函数将被执行,即将refresh-storm-active函数添加到refresh-active-timer定时器,refresh-active-timer定时器线程将会执行refresh-storm-active函数
    (let [base (.storm-base (:storm-cluster-state worker) (:storm-id worker) callback)]
     ;; 更新worker进程缓存的topology的活跃状态
     (reset!
      (:storm-active-atom worker)
      (= :active (-> base :status :type))
      ))
     ))
launch-receive-thread函数:
;; 为worker进程启动专有接收线程  
(defn launch-receive-thread [worker]
  (log-message "Launching receive-thread for " (:assignment-id worker) ":" (:port worker))
  ;; launch-receive-thread!函数请参见其定义部分
  (msg-loader/launch-receive-thread!
    ;; 连接实例,0.9版本开始默认使用netty,backtype.storm.messaging.netty.Context实例
    (:mq-context worker)
    (:storm-id worker)
    ;; 接收线程数
    (:receiver-thread-count worker)
    (:port worker)
    ;; 获取本地消息传输函数transfer-local-fn,transfer-local-fn函数将消息发送给分布在该worker进程上的task相应队列
    (:transfer-local-fn worker)
    ;; 获取worker进程输入队列大小
    (-> worker :storm-conf (get TOPOLOGY-RECEIVER-BUFFER-SIZE))
    :kill-fn (fn [t] (exit-process! 11))))
launch-receive-thread!函数:
;; launch-receive-thread!函数定义在loader.clj文件中,用于启动指定worker进程的接收线程  
(defnk launch-receive-thread!
  [context storm-id receiver-thread-count port transfer-local-fn max-buffer-size
   :daemon true
   :kill-fn (fn [t] (System/exit 1))
   :priority Thread/NORM_PRIORITY]
  ;; max-buffer-size绑定worker进程最大输入队列大小
  (let [max-buffer-size (int max-buffer-size)
      ;; 调用backtype.storm.messaging.netty.Context的bind方法建立一个服务器端的连接,socket绑定backtype.storm.messaging.netty.Server实例
        socket (.bind ^IContext context storm-id port)
        ;; thread-count绑定接收线程数,默认值为1
        thread-count (if receiver-thread-count receiver-thread-count 1)
        ;; 调用mk-receive-threads函数创建接收线程,vthreads绑定接收线程所对应的SmartThread实例,通过该实例我们可以start、join、interrupt接收线程,mk-receive-threads函数请参见其定义部分
        vthreads (mk-receive-threads context storm-id port transfer-local-fn daemon kill-fn priority socket max-buffer-size thread-count)]
    ;; 返回一个匿名函数,该匿名函数的主要功能就是通过向task_id=-1的任务发送一个空消息来关闭接收线程
    (fn []
      ;; 向本地端口port创建连接
      (let [kill-socket (.connect ^IContext context storm-id "localhost" port)]
        (log-message "Shutting down receiving-thread: [" storm-id ", " port "]")
        ;; 向task_id=-1的任务发送一个空消息,接收线程在接收消息时,首先检查是否是发送给task_id=-1消息,如果是则关闭接收线程
        (.send ^IConnection kill-socket
                  -1 (byte-array []))
        ;; 关闭连接
        (.close ^IConnection kill-socket)
        
        (log-message "Waiting for receiving-thread:[" storm-id ", " port "] to die")
        ;; 等待所有接收线程结束
        (for [thread-id (range thread-count)] 
             (.join (vthreads thread-id)))
        
        (log-message "Shutdown receiving-thread: [" storm-id ", " port "]")
        ))))
mk-receive-threads函数:
;; mk-receive-threads函数循环调用mk-receive-thread函数创建接收线程,mk-receive-thread请参见其定义部分
(defn- mk-receive-threads [context storm-id port transfer-local-fn  daemon kill-fn priority socket max-buffer-size thread-count]
  (into [] (for [thread-id (range thread-count)] 
             (mk-receive-thread context storm-id port transfer-local-fn  daemon kill-fn priority socket max-buffer-size thread-id))))
mk-receive-thread函数:
(defn- mk-receive-thread [context storm-id port transfer-local-fn  daemon kill-fn priority socket max-buffer-size thread-id]
    ;; async-loop函数接收一个"函数"或"函数工厂"作为参数生成一个java thread,这个java thread不断循环执行这个"函数"或"函数工厂"生产的函数。async-loop函数返回实现SmartThread协议的实例,通过该实例我们可以start、join、interrupt接收线程
    (async-loop
       ;; 这个参数就是一个"函数工厂","函数工厂"就是一个返回函数的函数
       (fn []
         (log-message "Starting receive-thread: [stormId: " storm-id ", port: " port ", thread-id: " thread-id  " ]")
         ;; 生成的java thread的run方法不断循环执行该函数
         (fn []
           ;; batched是一个ArrayList对象
           (let [batched (ArrayList.)
                 ;; backtype.storm.messaging.netty.Server的recv方法返回ArrayList<TaskMessage>的Iterator<TaskMessage>。关于消息的处理流程会在以后文章中具体分析
                 ^Iterator iter (.recv ^IConnection socket 0 thread-id)
                 closed (atom false)]
             ;; 当iter不为nil,遍历iter
             (when iter 
               (while (and (not @closed) (.hasNext iter)) 
                  ;; packet绑定一个TaskMessage对象,TaskMessage有两个成员属性task和message,task表示处理该消息的任务id,message表示消息的byte数组
                  (let [packet (.next iter)
                      ;; task绑定接收该消息的任务id
                        task (if packet (.task ^TaskMessage packet))
                        ;; message绑定消息的byte数组
                        message (if packet (.message ^TaskMessage packet))]
                      ;; 如果task=-1,则关闭接收线程
                      (if (= task -1)
                         (do (log-message "Receiving-thread:[" storm-id ", " port "] received shutdown notice")
                           (.close socket)
                           (reset! closed  true))
                         ;; 否则将数组[task message]添加到batched
                         (when packet (.add batched [task message]))))))
             ;; 如果接收线程关闭标识closed值为false,则调用transfer-local-fn函数将接收到的一批消息发送给task对应的接收队列
             (when (not @closed)
               (do
                 (if (> (.size batched) 0)
                   (transfer-local-fn batched))
                 ;; 0表示函数执行完一次不需要sleep,直接进行下一次执行
                 0)))))
         ;; 表示参数是一个"函数工厂"
         :factory? true
         ;; daemon的值为true,所以接收线程是一个守护线程
         :daemon daemon
         ;; 指定kill函数
         :kill-fn kill-fn
         ;; 指定java thread的优先级
         :priority priority
         ;; 指定接收线程的名称为"worker-receiver-thread-"+thread-id
         :thread-name (str "worker-receiver-thread-" thread-id)))
 
以上就是supervisor启动worker的源码分析,启动worker的过程中涉及了executor的相关内容,这里没有详细分析,会在以后进行分析。同时也涉及了跟消息队列相关的内容
也会在以后进行详细分析。
supervisor启动worker源码分析-worker.clj
原文:http://www.cnblogs.com/ierbar0604/p/4389272.html