problem:
A robot is located at the top-left corner of a m x n grid (marked ‘Start‘ in the diagram below).
The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked ‘Finish‘ in the diagram below).
How many possible unique paths are there?

Above is a 3 x 7 grid. How many possible unique paths are there?
Note: m and n will be at most 100.
Array Dynamic Programmingthinking:
(1)这道题相当经典,为什么这样说,且听分析
看到题第一反应想到用DFS遍历每一条路径,计个数即可。但是DFS的时间复杂度是路径数total 的线性表达式,提交显示 TLE
(2)抖机灵想到用递归,f(m,n)=f(m-1,n)+f(m,n-1),当m或n为1时,路径数为1。 但是,递归法的时间复杂度同DFS法一样,提交也是TLE
(3)正确的解法是DP,状态转移方程 同递归法一样:a[m][n] = a[m-1][n]+a[m][n-1],采用自底向上的思路,时间复杂度和空间复杂度都为O(m*n)
code:
DFS法: TLE
class Solution {
public:
    int uniquePaths(int m, int n) {
        int count=0;
        int x=0,y=0;
        dfs(x,y,m,n,count);
        return count;
       
    }
protected:
    void dfs(int x, int y, int m, int n, int &count)
    {
        
        if(x==m-1 && y==n-1)
        {
            count++;
            return;
        }
       if(x<m-1 && y< n-1)
       {
           dfs(x+1,y,m,n,count);
           dfs(x,y+1,m,n,count);
       }
       else if(x==m-1 && y<n-1)
           dfs(x,y+1,m,n,count);
       else
           dfs(x+1,y,m,n,count);
    }
};class Solution {
public:
    int uniquePaths(int m, int n) {
       return f(m,n);
        
    }
protected:
    int f(int m,int n)
    {
        if(m==1 || n==1)
            return 1;
        else
            return f(m-1,n)+f(m,n-1);
    }
};
class Solution {
public:
    int uniquePaths(int m, int n) {
        vector<vector<int> > a(m, vector<int>(n));
        
        for(int i = 0; i < n; i++)
            a[0][i] = 1;
            
        for(int i = 0; i < m; i++)
            a[i][0] = 1;
            
        for(int i = 1; i < m; i++)
            for(int j = 1; j < n; j++)
                a[i][j] = a[i-1][j] + a[i][j-1];
                
        return a[m-1][n-1];
    }
};
原文:http://blog.csdn.net/hustyangju/article/details/44829339