首页 > 其他 > 详细

[Everyday Mathematics]20150306

时间:2015-04-01 14:43:54      阅读:101      评论:0      收藏:0      [点我收藏+]

在王高雄等《常微分方程(第三版)》习题 2.5 第 1 题第 (32) 小题: $$\bex \frac{\rd y}{\rd x}+\frac{1+xy^3}{1+x^3y}=0. \eex$$

 

解答: $$\beex \bea 0&=(1+xy^3)\rd x+(1+x^3y)\rd y\\ &=\rd (x+y) +xy^3\rd x+x^3y\rd y\\ &=\rd (x+y) +xy^2(y\rd x+x\rd y)+x^2y(x\rd y+y\rd x) -x^2y^2\rd (x+y)\\ &=(1-x^2y^2)\rd (x+y)+\frac{1}{2}(x+y)\rd (x^2y^2). \eea \eeex$$ 当 $x^2y^2\neq 1$, $x+y\neq 0$ 时, $$\bex 0=\frac{2\rd (x+y)}{x+y} -\frac{\rd (x^2y^2)}{x^2y^2-1} =\rd \ln \frac{(x+y)^2}{x^2y^2-1}\ra C(x^2y^2-1)=(x+y)^2. \eex$$ 故原方程的通解为 $(x+y)^2=C(x^2y^2-1)$. 另外, 还有特解 $x+y=0$. 

[Everyday Mathematics]20150306

原文:http://www.cnblogs.com/zhangzujin/p/4383545.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!