Consider a N*N*N lattice. One corner is at (0,0,0) and the opposite one is at (N,N,N). How many lattice points are visible from corner at (0,0,0) ? A point X is visible from point Y iff no other lattice point lies
on the segment joining X and Y.
Input :
The first line contains the number of test cases T. The next T lines contain an interger N
Output :
Output T lines, one corresponding to each test case.
Sample Input :
3
1
2
5
Sample Output :
7
19
175
Constraints :
T <= 50
1 <= N <= 1000000
/* *********************************************** Author :CKboss Created Time :2015年03月26日 星期四 21时56分19秒 File Name :VLATTICE.cpp ************************************************ */ #include <iostream> #include <cstdio> #include <cstring> #include <algorithm> #include <string> #include <cmath> #include <cstdlib> #include <vector> #include <queue> #include <set> #include <map> using namespace std; typedef long long int LL; const int maxn = 1001000; bool check[maxn]; int prime[maxn],mu[maxn]; void Moblus() { memset(check,true,sizeof(check)); mu[1]=1; int tot=0; for(int i=2;i<maxn;i++) { if(check[i]) { prime[tot++]=i; mu[i]=-1; } for(int j=0;j<tot;j++) { int ij=prime[j]*i; if(ij>maxn) break; check[ij]=false; if(i%prime[j]==0) { mu[ij]=0; break; } else mu[ij]=-mu[i]; } } } int main() { //freopen("in.txt","r",stdin); //freopen("out.txt","w",stdout); Moblus(); int T_T; cin>>T_T; while(T_T--) { LL n; cin>>n; LL sum=3; for(int i=1;i<=n;i++) { sum+=mu[i]*(n/i)*(n/i)*(n/i+3); } cout<<sum<<endl; } return 0; }
SPOJ VLATTICE - Visible Lattice Points 莫比乌斯反演
原文:http://blog.csdn.net/ck_boss/article/details/44657329