算法提高 最小方差生成树
时间限制:1.0s 内存限制:256.0MB
1<=U,V<=N<=50,N-1<=M<=1000,0<=W<=50。数据不超过5组。
题目分析:要求方差最小,就是要每条边(val - ave)^2的和最小,枚举所有边权和的可能值,多次kruskal求最小生成树,每次求的时候,以(val - ave)^2作为当前边的权值,如果该树的val和等于我们枚举的和,则修改ans的值,因为题目的数据量很小,复杂度大概为O(NWElogE)大概是1e7左右,基本可以接受
#include <cstdio> #include <cstring> #include <algorithm> using namespace std; double const MAX = 10000000000000.0; int fa[55], map[55][55]; int minv, maxv; int n, m, cnt, a[55]; double ans; struct Edge { int u, v, w; double fw; }e[55]; bool cmp(Edge a, Edge b) { return a.fw < b.fw; } bool cmp1(int a, int b) { return a > b; } void UF_set() { for(int i = 0; i < 55; i++) fa[i] = i; } int Find(int x) { return x == fa[x] ? x : fa[x] = Find(fa[x]); } int Union(int a, int b) { int r1 = Find(a); int r2 = Find(b); if(r1 != r2) fa[r2] = r1; } void Kruskal(int sum) { UF_set(); double fall = 0; cnt = 0; int all = 0; double ave = (sum * 1.0) / ((n - 1) * 1.0); for(int i = 0; i < m; i++) e[i].fw = ((double)e[i].w - ave) * ((double)e[i].w - ave); sort(e, e + m, cmp); for(int i = 0; i < m; i++) { int u = e[i].u; int v = e[i].v; if(Find(u) != Find(v)) { Union(u, v); fall += e[i].fw; all += e[i].w; cnt++; } if(cnt == n - 1) break; } if(all == sum) ans = min(ans, fall); } int main() { int ca = 1; while(scanf("%d %d", &n, &m) != EOF && (m + n)) { minv = 0; maxv = 0; ans = MAX; for(int i = 0; i < m; i++) { scanf("%d %d %d", &e[i].u, &e[i].v, &e[i].w); a[i] = e[i].w; } sort(a, a + m); for(int i = 0; i < n - 1; i++) minv += a[i]; sort(a, a + m, cmp1); for(int i = 0; i < n - 1; i++) maxv += a[i]; for(int i = minv; i <= maxv; i++) Kruskal(i); printf("Case %d: %.2f\n", ca++, ans / (double) (n - 1)); } }
蓝桥杯练习题 最小方差生成树 (Kruskal MST 好题)
原文:http://blog.csdn.net/tc_to_top/article/details/44650537