Follow up for "Unique Paths":
Now consider if some obstacles are added to the grids. How many unique paths would there be?
An obstacle and empty space is marked as 1
and 0
respectively
in the grid.
For example,
There is one obstacle in the middle of a 3x3 grid as illustrated below.
[ [0,0,0], [0,1,0], [0,0,0] ]
The total number of unique paths is 2
.
Note: m and n will be at most 100.
思路:只不过与上面一个区别就是有一个障碍点,在这个障碍点上 dp[i][j] = 0;
int Unique_path(int m,int n,int first,int second) { vector<vector<int> > dp(m+1); int i,j; for(i=0;i<dp.size();i++) dp[i].assign(n+1,0); dp[0][0] =1; for(i=0;i<dp.size();i++) { for(j=0;j<dp[0].size();j++) { if(i!=0 || j!=0) { if(i == first && j == second) dp[i][j] =0; else { if(i==0) dp[i][j] = dp[i][j-1]; else if(j == 0) dp[i][j] = dp[i-1][j]; else dp[i][j] = dp[i][j-1] + dp[i-1][j]; } } } } return dp[m][n]; } int main() { cout<<Unique_path(3,7,2,3)<<endl; return 0; }
原文:http://blog.csdn.net/yusiguyuan/article/details/44652539