首页 > 其他 > 详细

bzoj 3907: 网格 组合数学

时间:2015-03-17 13:54:18      阅读:449      评论:0      收藏:0      [点我收藏+]

3907: 网格

Time Limit: 1 Sec  Memory Limit: 256 MB
Submit: 13  Solved: 7
[Submit][Status][Discuss]

Description

某 城市的街道呈网格状,左下角坐标为A(0, 0),右上角坐标为B(n, m),其中n >= m。现在从A(0, 0)点出发,只能沿着街道向正右方或者正上方行走,且不能经过图示中直线左上方的点,即任何途径的点(x, y)都要满足x >= y,请问在这些前提下,到达B(n, m)有多少种走法。
技术分享

Input

输入文件中仅有一行,包含两个整数n和m,表示城市街区的规模。

Output

输出文件中仅有一个整数和一个换行/回车符,表示不同的方案总数。

Sample Input

6 6

Sample Output

132

HINT

100%的数据中,1 <= m <= n <= 5 000
 
  这道题可以转化成一次BestCoder的题目我们以y=x这条线将地图补齐,那么就转化成了对于一串括号“(((?????"求合法方案数,那么结合卡特兰数公式h(n)=C(2n,n)-C(2n,n+1)的推导方法可以很容易拓展到本题,详细公式参见代码。
def C(n,m):
    return fact[n]/fact[m]/fact[n-m];
f=raw_input().split(" ");
n=int(f[0]);
m=int(f[1]);
tot=max(n,m)*2;
fact=[1];
for i in range(1,tot+1):
    fact.append(fact[-1]*i);
c=n-m;
ans=C(tot-c,tot/2)-C(tot-c,tot/2+1);
print ans;

 

bzoj 3907: 网格 组合数学

原文:http://www.cnblogs.com/mhy12345/p/4343980.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!