首页 > 系统服务 > 详细

Machine Learning - IV. Linear Regression with Multiple Variables (Week 2)

时间:2015-02-05 18:29:17      阅读:299      评论:0      收藏:0      [点我收藏+]

http://blog.csdn.net/pipisorry/article/details/43529845

机器学习Machine Learning - Andrew NG courses学习笔记

multivariate linear regression多变量线性规划

(linear regression works with multiple variables or with multiple features)

Multiple Features(variables)多特征(变量)

技术分享

{x上标i代表第i个trainning example;  x下标i代表特定trainning example中的第i个数值}


the hypothesis for linear regression with multiple features(variables)多变量线性回归的假设函数的表示
技术分享


additional zero feature x0(为了方便表示)

for every example i have a feature vector X superscript I and X superscript I subscript 0 is going to be equal to 1.



Gradient Descent for Multiple Variables多变量的梯度下降

模型表示

技术分享

通过gradient descent algorithm求解cost func最小值来求parameters θ

技术分享

{其中左边是单变量线性规划求解参数的gradient descent algorithm;

右边是多变量线性规划求解参数的算法}


Gradient Descent in Practice I - Feature Scaling梯度下降实践1 - 特征缩放




Gradient Descent in Practice II - Learning Rate梯度下降实践2 - 学习率




Features and Polynomial Regression特征和多项式回归



Normal Equation普通方程






from:http://blog.csdn.net/pipisorry/article/details/43529845


Machine Learning - IV. Linear Regression with Multiple Variables (Week 2)

原文:http://blog.csdn.net/pipisorry/article/details/43529845

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!