2008“缤纷下沙校园文化活动月”之大学生程序设计竞赛暨新生专场
题目大意: 给你公式f(x, y, m, n) ,再给你a,b,c,d,剑气的伤害为:f(x, y, a, b)+f(x, y, c, d)
其中x,y为变量,a、b、c、d是所给常量,求出剑气最小伤害为多少。
思路:f(x, y, m, n) = sqrt(x*x + y*y + m*m + n*n - 2*m*x - 2*n*y) = sqrt( (x-m)^2 + (y-n)^2 )
剑气伤害为:sqrt( (x-a)^2 + (y-b)^2 ) + sqrt( (x-c)^2 + (y-d)^2 ),即求点(a,b)和点(c,d)到某
点(x,y)的最短距离和。若想是距离最短,则点(x,y)肯定是点(a,b)和点(c,d)所连线段上一点,最
短距离即为点(a,b)到点(c,d)的距离,即sqrt( (c-a)^2 + (d-b)^2 )。
#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<cmath>
using namespace std;
int main()
{
    int T;
    cin >> T;
    double x1,y1,x2,y2;
    while(T--)
    {
        cin >> x1 >> y1 >> x2 >> y2;
        double ans = sqrt( (y2-y1)*(y2-y1)+(x2-x1)*(x2-x1) );
        printf("%.1lf\n",ans);
    }
    return 0;
}
原文:http://blog.csdn.net/lianai911/article/details/43373615