1. Define variable return_code to record the function‘s status.
int return_code = 0;
2. Define the exit flag: exit_flag, which is used by goto. This flag is defined at the end of function body. The content of exit_flag includes free memory and return the status of function.
exit_flag: if(m_a) free(m_a); if(m_b) free(m_b); if(m_c) free(m_c); if(m_d) free(m_d); return return_code;
3. Check the array formal parameters of function.
//check
if (NULL == a) {
return_code = -1;
goto exit_flag;
}
if (NULL == b) {
return_code = -1;
goto exit_flag;
}
4. Allocate memory
// allocate memory
m_a = (float *) malloc(n * sizeof(float));
if(!m_a){
printf("Failed to allocate memory! \n");
return_code = -1;
goto exit_flag;
}
Example:
#define IN
#define OUT
int solve_tridiagonal_equation_thomas(
IN int n,
IN float a[], IN float b[], IN float c[],
IN float d[],
OUT float x[]
)
{
int return_code = 0;
//check
if (NULL == a) {
return_code = -1;
goto exit_flag;
}
if (NULL == b) {
return_code = -1;
goto exit_flag;
}
if (NULL == c) {
return_code = -1;
goto exit_flag;
}
if (NULL == d) {
return_code = -1;
goto exit_flag;
}
if (NULL == x) {
return_code = -1;
goto exit_flag;
}
int i = 0;
float tmp = 0;
float *m_a, *m_b, *m_c, *m_d;
// allocate memory
m_a = (float *) malloc(n * sizeof(float));
if(!m_a){
printf("Failed to allocate memory! \n");
return_code = -1;
goto exit_flag;
}
m_b = (float *) malloc(n * sizeof(float));
if(!m_b){
printf("Failed to allocate memory! \n");
return_code = -1;
goto exit_flag;
}
m_c = (float *) malloc(n * sizeof(float));
if(!m_c){
printf("Failed to allocate memory! \n");
return_code = -1;
goto exit_flag;
}
m_d = (float *) malloc(n * sizeof(float));
if(!m_d){
printf("Failed to allocate memory! \n");
return_code = -1;
goto exit_flag;
}
// diagonal dominant validation and copy data
bool cond1 = (abs(b[0]) > abs(c[0])) && (abs(c[0]) > 0);
bool cond2 = (abs(b[n-1]) > abs(a[n-1])) && (abs(a[n-1]) > 0);
if(!(cond1 && cond2))
{
printf("Matrix is Invalid! \n");
return_code = -2;
goto exit_flag;
}
for(i = 1; i < n-1; ++i)
{
if(abs(b[i]) < abs(c[i]) + abs(c[i]))
{
printf("Matrix is NOT diagonal dominant! \n");
return_code = -2;
goto exit_flag;
}
else{
m_a[i] = a[i];
m_b[i] = b[i];
m_c[i] = c[i];
m_d[i] = d[i];
}
}
memcpy(m_a, a, n * sizeof(float));
// forward elimination
for(i = 1; i < n; ++i)
{
tmp = m_a[i] / m_b[i-1];
m_b[i] = m_b[i] - tmp * m_c[i-1];
m_d[i] = m_d[i] - tmp * m_d[i-1];
}
// backward substitution
x[n-1] = m_d[n-1] / m_b[n-1];
for(i = n-2; i >= 0; --i)
{
x[i] = (m_d[i] - m_c[i] * x[i+1]) / m_b[i];
}
// free memory and exit
exit_flag:
if(m_a)
free(m_a);
if(m_b)
free(m_b);
if(m_c)
free(m_c);
if(m_d)
free(m_d);
return return_code;
}
原文:http://www.cnblogs.com/kid551/p/4253595.html