Input
* Line 1: Two space-separated integers, N and M.
Output
* Line 1: A single integer that is the length of the longest road required to be traversed.
Sample Input
3 31 3 43
43
In order to reach farm 2, Bessie travels along a road of length 23. To reach farm 3, Bessie travels along a road of length 43. With capacity 43, she can travel along these roads provided that she refills her tank to maximum capacity before she starts down a road.
Source
USACO 2005 March Silver
题目大意:1号农场的草被牛吃完了,Bessie必须从其他农场运草回来,总共有N个农场,Bessie要
去其他所有的农场运草回来,他想要使总路程最短并且路线能连接所有的农场。必须要考虑到路上
带的水袋大小。因为水袋大小和路线中距离最长的两个农场之间的路有关,现在Bessie想要求出满
足要求的路线中两个农场之间最长的路距离是多少。
思路:满足要求的路线其实就是最小生成树,路线中两个农场之间最长的路距离就是最小生成树上
最长的边。这样用Kruskal求最小生成树的时候,用Max求出最小生成树上最长的边。
<span style="font-family:Microsoft YaHei;font-size:18px;">#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
using namespace std;
const int MAXN = 2100;
const int MAXM = 40040;
struct EdgeNode
{
int from;
int to;
int w;
}Edges[MAXM];
int father[MAXN];
int find(int x)
{
if(x != father[x])
father[x] = find(father[x]);
return father[x];
}
int cmp(EdgeNode a,EdgeNode b)
{
return a.w < b.w;
}
void Kruskal(int N,int M)
{
sort(Edges,Edges+M,cmp);
int Count = 0, Max = 0;
for(int i = 0; i < M; ++i)
{
int u = find(Edges[i].from);
int v = find(Edges[i].to);
if(u != v)
{
father[v] = u;
Count++;
if(Max < Edges[i].w)
Max = Edges[i].w;
if(Count == N-1)
break;
}
}
cout << Max << endl;
}
int main()
{
int N,M;
while(~scanf("%d%d",&N,&M))
{
for(int i = 1; i <= N; ++i)
father[i] = i;
for(int i = 0; i < M; ++i)
{
scanf("%d%d%d",&Edges[i].from, &Edges[i].to, &Edges[i].w);
}
Kruskal(N,M);
}
return 0;
}
</span>原文:http://blog.csdn.net/lianai911/article/details/43088961