Input
* Line 1: Two space-separated integers: N and M
* Lines 2..M+1: Each line contains three space-separated integers A, B, and C that describe a connection route between barns A and B of cost C.
Output
* Line 1: A single integer, containing the price of the most expensive tree connecting all the barns. If it is not possible to connect all the barns, output -1.
Sample Input
5 8
Sample Output
42
Hint
OUTPUT DETAILS:
Source
USACO 2004 December Silver
题目大意:Bessie要在John的N个谷仓之间修路,John要求用尽可能少的路使得所有谷仓都能
联通,并且总距离最短,但是他又不想给Bessie钱。Bessie已经意识到John可能不给他钱,所
以他就想把这个工程做的最糟糕并且不让John发现。他决定用尽可能少的路使得所有谷仓都能
联通,但是要使总距离尽可能长。求这个可能的总距离。如果不能使得所有谷仓都联通,则输
出"-1"。
思路:和最小生成树的求法类似,这里使边的权值尽可能大。用Kruskal算法来做,排序的时候,
将边从大到小排序。因为Kruskal算法过程中要先判断两点是否联通,而且边是从大到小排序,所
以如果两点间有重边,则优先选择大的加入生成树中。
#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
using namespace std;
const int MAXN = 1100;
const int MAXM = 40040;
struct EdgeNode
{
int from;
int to;
int w;
}Edges[MAXM];
int father[MAXN];
int find(int x)
{
if(x != father[x])
father[x] = find(father[x]);
return father[x];
}
int cmp(EdgeNode a,EdgeNode b)
{
return a.w > b.w;
}
void Kruskal(int N,int M)
{
sort(Edges,Edges+M,cmp);
int ans = 0,Count = 0;
for(int i = 0; i < M; ++i)
{
int u = find(Edges[i].from);
int v = find(Edges[i].to);
if(u != v)
{
ans += Edges[i].w;
father[v] = u;
Count++;
if(Count == N-1)
break;
}
}
if(Count == N-1)
cout << ans << endl;
else
cout << "-1" << endl;
}
int main()
{
int N,M;
while(~scanf("%d%d",&N,&M))
{
for(int i = 1; i <= N; ++i)
father[i] = i;
for(int i = 0; i < M; ++i)
{
scanf("%d%d%d",&Edges[i].from, &Edges[i].to, &Edges[i].w);
}
Kruskal(N,M);
}
return 0;
}
POJ2377 Bad Cowtractors【Kruskal】【求最大生成树】
原文:http://blog.csdn.net/lianai911/article/details/43087591