Given an array S of n integers, are there elements a, b, c, and d in S such that a + b + c + d = target? Find all unique quadruplets in the array which gives the sum of target.
Note:
For example, given array S = {1 0 -1 0 -2 2}, and target = 0.
A solution set is:
(-1, 0, 0, 1)
(-2, -1, 1, 2)
(-2, 0, 0, 2)
vector<vector<int> > fourSum(vector<int> &num, int target) { //C++
vector<vector<int> > res;
if (num.size() <= 3) return res;
sort(num.begin(), num.end());
int twoSum;
for (int i = 0; i < num.size() - 3;)
{
for(int j = i+1; j < num.size()-2;){
int l = j+1, r = num.size() - 1;
twoSum = target -num[i] - num[j];
while (l < r)
{
if (num[l] + num[r] < twoSum) l++;
else if (num[l] + num[r] == twoSum)
{
vector<int> three(4);
three[0] = num[i];
three[1] = num[j];
three[2] = num[l];
three[3] = num[r];
res.push_back(three);
do { l++; }while (l < r && num[l - 1] == num[l]);
do { r--; }while (l < r && num[r + 1] == num[r]);
}
else r--;
}
do{ j++; }while (j < num.size() - 2 && num[j - 1] == num[j]);
}
do{ i++; }while (i < num.size() - 3 && num[i - 1] == num[i]);
}
sort(res.begin(),res.end());
return res;
}原文:http://blog.csdn.net/chenlei0630/article/details/42841731