题目大意:给出一个表格,每个表格指向周围四个格子中的一个,问你可以改变一些格子上的指向,问让所有格子都在圈中最小需要改变多少。
思路:所有的格子都在圈中,由于每个格子只能有一个出边,所以就要保证所有格子都有一个入边。建立费用流的模型,所有点向汇点连流量1费用0的边,表示要接受一个入边。S向所有点连一条流量1费用0的边,表示一条出边。一个格子向周围四个格子连边,流量1,如果方向与当前方向相符,那么费用0,否则费用1。之后跑费用流就是答案了。
CODE:
#include <queue>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#define MAX 10010
#define INF 0x3f3f3f3f
#define S 0
#define T (MAX - 1)
using namespace std;
const int dx[] = {0,0,0,-1,1};
const int dy[] = {0,-1,1,0,0};
int G[256];
struct MinCostMaxFlow{
int head[MAX],total;
int next[MAX],aim[MAX],cost[MAX],flow[MAX];
int f[MAX],from[MAX],p[MAX];
bool v[MAX];
MinCostMaxFlow() {
total = 1;
}
void Add(int x,int y,int f,int c) {
next[++total] = head[x];
aim[total] = y;
flow[total] = f;
cost[total] = c;
head[x] = total;
}
void Insert(int x,int y,int f,int c) {
Add(x,y,f,c);
Add(y,x,0,-c);
}
bool SPFA() {
static queue<int> q;
while(!q.empty()) q.pop();
memset(f,0x3f,sizeof(f));
memset(v,false,sizeof(v));
f[S] = 0;
q.push(S);
while(!q.empty()) {
int x = q.front(); q.pop();
v[x] = false;
for(int i = head[x]; i; i = next[i])
if(flow[i] && f[aim[i]] > f[x] + cost[i]) {
f[aim[i]] = f[x] + cost[i];
if(!v[aim[i]])
v[aim[i]] = true,q.push(aim[i]);
from[aim[i]] = x;
p[aim[i]] = i;
}
}
return f[T] != INF;
}
int EdmondsKarp() {
int re = 0;
while(SPFA()) {
int max_flow = INF;
for(int i = T; i != S; i = from[i])
max_flow = min(max_flow,flow[p[i]]);
for(int i = T; i != S; i = from[i]) {
flow[p[i]] -= max_flow;
flow[p[i]^1] += max_flow;
}
re += max_flow * f[T];
}
return re;
}
}solver;
int m,n;
int num[20][20],cnt;
char s[20][20];
int main()
{
G['L'] = 1,G['R'] = 2,G['U'] = 3,G['D'] = 4;
cin >> m >> n;
for(int i = 1; i <= m; ++i) {
scanf("%s",s[i] + 1);
for(int j = 1; j <= n; ++j) {
num[i][j] = ++cnt;
solver.Insert(S,cnt << 1,1,0);
solver.Insert(cnt << 1|1,T,1,0);
}
}
for(int i = 1; i <= m; ++i)
for(int j = 1; j <= n; ++j)
for(int k = 1; k <= 4; ++k) {
int fx = i + dx[k],fy = j + dy[k];
if(!fx) fx = m;
if(!fy) fy = n;
if(fx > m) fx = 1;
if(fy > n) fy = 1;
if(k == G[s[i][j]])
solver.Insert(num[i][j] << 1,num[fx][fy] << 1|1,1,0);
else
solver.Insert(num[i][j] << 1,num[fx][fy] << 1|1,1,1);
}
cout << solver.EdmondsKarp() << endl;
return 0;
}原文:http://blog.csdn.net/jiangyuze831/article/details/42772301