因为最近项目要使用BP神经网络来做一些飞行预测,所以今天从图书馆借来了《Matlab神经网络30个案例分析》,这本书很不错推荐给大家,然后研究了下代码,使用语音分类这个例子做了源码实现与工具箱实现,源码实现过程中进行了小小的改变,工具箱用起来非常方便,但是手写一下BP神经网络的前向后向对于理解BP神经网络还是有极大帮助的,这里把这两种实现方式贴出来并带有结果截图。显然BP神经网络对于这种非线性拟合场合效果是非常好的。
(1) 源码实现
%% 清空环境变量 clc clear %% 训练数据预测数据提取及归一化 %下载四类语音信号 load data1 c1 load data2 c2 load data3 c3 load data4 c4 %四个特征信号矩阵合成一个矩阵 data(1:500,:) = c1(1:500,:); data(501:1000,:) = c2(1:500,:); data(1001:1500,:) = c3(1:500,:); data(1501:2000,:) = c4(1:500,:); %从1到2000产生随机数 k = rands(1,2000); [m,n] = sort(k); %%提取输入、输出数据 input= data(:,2:25); output1= data(:,1); %将输出数据由一维变为四维 for i = 1:1:2000 switch output1(i) case 1 output(i,:) = [1 0 0 0]; case 2 output(i,:) = [0 1 0 0]; case 3 output(i,:) = [0 0 1 0]; case 4 output(i,:) = [0 0 0 1]; end end %随机提取1500个测试数据,500个样本为预测数据 input_train = input(n(1:1500),:)‘; output_train = output(n(1:1500),:)‘; input_test = input(n(1501:2000),:)‘; output_test = output(n(1501:2000),:)‘; %归一化 [inputn,inputps] = mapminmax(input_train); %变量、权值初始化 innum = 24; midnum = 25; outnum = 4; w1 = rands(midnum,innum); b1 = rands(midnum,1); w2 = rands(outnum,midnum); b2 = rands(outnum,1); w1_1 = w1; b1_1 = b1; w2_1 = w2; b2_1 = b2; xite = 0.1 %%网络训练 for ii=1:10 E(ii)=0; for i = 1:1500 x = inputn(:,i); for j = 1:1:midnum %%计算隐层值 I(j) = inputn(:,i)‘*w1(j,:)‘ + b1(j); Iout(j) =1/(1+exp(-I(j))); end %%计算输出层值 yn = w2*Iout‘ + b2; %%计算误差 e = output_train(:,i)-yn; E(ii) = E(ii) + sum(abs(e)); %%计算权值变化率 dw2 = e*Iout; db2 = e; for j = 1:1:midnum S = 1/(1+exp(-I(j))); FI(j) = S*(1-S); end for k = 1:innum for j = 1:midnum dw1(j,k) = FI(j)*x(k)*(w2(:,j)‘*e); db1(j) = FI(j)*(w2(:,j)‘*e); end end %%更新权值 w1 = w1_1 + xite*dw1; b1 = b1_1 + xite*db1‘; w2 = w2_1 + xite*dw2; b2 = b2_1 + xite*db2; w1_1 = w1; b1_1 = b1; w2_1 = w2; b2_1 = b2; end end %%语音信号分类 inputn_test = mapminmax(‘apply‘,input_test,inputps); for i=1:1:500 for j = 1:1:midnum I(j) = inputn_test(:,i)‘*w1(j,:)‘ + b1(j); Iout(j) = 1/(1+exp(-I(j))); end fore(:,i) = w2*Iout‘ + b2; end %%计算误差 for i =1:1:500 output_fore(i) = find(fore(:,i) == max(fore(:,i))); end error =output_fore - output1(n(1501:2000))‘; %画出预测语音种类和实际语音种类的分类图 figure(1) plot(output_fore,‘r‘) hold on plot(output1(n(1501:2000))‘,‘b‘) legend(‘预测语音类别‘,‘实际语音类别‘) %画出误差图 figure(2) plot(error) title(‘BP网络分类误差‘,‘fontsize‘,12) xlabel(‘语音信号‘,‘fontsize‘,12) ylabel(‘分类误差‘,‘fontsize‘,12) %print -dtiff -r600 1-4 k=zeros(1,4); %找出判断错误的分类属于哪一类 for i=1:1:500 if error(i)~=0 [b,c]=max(output_test(:,i)); switch c case 1 k(1) = k(1) +1; case 2 k(2) = k(2) +1; case 3 k(3) = k(3) +1; case 4 k(4) = k(4) +1; end end end %找出每类的个体和 kk=zeros(1,4); for i=1:500 [b,c]=max(output_test(:,i)); switch c case 1 kk(1)=kk(1)+1; case 2 kk(2)=kk(2)+1; case 3 kk(3)=kk(3)+1; case 4 kk(4)=kk(4)+1; end end radio = (kk-k)./kk
(2) 工具箱实现
%清空环境变量 clc clear %下载输入输出数据 load data1 c1 load data2 c2 load data3 c3 load data4 c4 data(1:500,:) = c1(1:500,:); data(501:1000,:) = c2(1:500,:); data(1001:1500,:) = c3(1:500,:); data(1501:2000,:) = c4(1:500,:); input = data(:,2:25); output1 = data(:,1); k = rands(1,2000); [m,n] = sort(k); input_train = input(n(1:1500),:)‘; output_train = output1(n(1:1500),:)‘; input_test = input(n(1501:2000),:)‘; output_test = output1(n(1501:2000),:)‘; [inputn,inputps] = mapminmax(input_train); [outputn,outputps] = mapminmax(output_train); %BP神经网络构建 net = newff(inputn,outputn,25); %网络参数配置 net.trainParam.epochs = 100; net.trainParam.lr = 0.1; net.trainParam.goal = 0.00004; %BP神经网络训练 net = train(net,inputn,outputn); %预测数据归一化 inputn_test = mapminmax(‘apply‘,input_test,inputps); %BP神经网络预测输出 an = sim(net,inputn_test); %输出结果反归一化 BPoutput = mapminmax(‘reverse‘,an,outputps); %网络预测结果图形 figure(1) plot(BPoutput,‘:og‘); hold on plot(output_test,‘-*‘); legend(‘预测输出‘,‘期望输出‘) title(‘BP网络预测输出‘,‘fontsize‘,12) ylabel(‘函数输出‘,‘fontsize‘,12) xlabel(‘样本‘,‘fontsize‘,12) %预测误差 error = BPoutput - output_test; figure(2) plot(error,‘-*‘) title(‘BP网络预测误差‘,‘fontsize‘,12) ylabel(‘误差‘,‘fontsize‘,12) xlabel(‘样本‘,‘fontsize‘,12) figure(3) plot((output_test-BPoutput)./BPoutput,‘-*‘); title(‘神经网络预测误差百分比‘) errorsum = sum(abs(error))
基于Matlab的BP神经网络--源代码与工具箱实现,布布扣,bubuko.com
原文:http://blog.csdn.net/xz_rabbit/article/details/20399659