题目大意:给出一个三维的点阵,没个点都有可能被切割,代价就是这个点的权值。相邻的切割点的高度差不能超过D,问最小的花费使得上下分开。
思路:很裸的最小割模型,很神的建图。
S->第一层的点,f:INF
所有点->它下面的点,f:INF
一个点的入->一个点的出,f:val[i]
(i,j,k) - > (i - d,j,k),f:INF
最下面一层的点->T:f:INF
然后跑最小割就是答案。
为什么见:http://www.cnblogs.com/zyfzyf/p/4182168.html OTZ ZYF
CODE:
#include <queue>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#define MAX 130000
#define MAXE 1200000
#define S 0
#define T (MAX - 1)
#define INF 0x3f3f3f3f
using namespace std;
const int dx[] = {0,1,-1,0,0};
const int dy[] = {0,0,0,1,-1};
struct MaxFlow{
int head[MAX],total;
int next[MAXE],aim[MAXE],flow[MAXE];
int deep[MAX];
MaxFlow() {
total = 1;
memset(head,0,sizeof(head));
}
void Add(int x,int y,int f) {
next[++total] = head[x];
aim[total] = y;
flow[total] = f;
head[x] = total;
}
void Insert(int x,int y,int f) {
Add(x,y,f);
Add(y,x,0);
}
bool BFS() {
static queue<int> q;
while(!q.empty()) q.pop();
memset(deep,0,sizeof(deep));
deep[S] = 1;
q.push(S);
while(!q.empty()) {
int x = q.front(); q.pop();
for(int i = head[x]; i; i = next[i])
if(flow[i] && !deep[aim[i]]) {
deep[aim[i]] = deep[x] + 1;
q.push(aim[i]);
if(aim[i] == T) return true;
}
}
return false;
}
int Dinic(int x,int f) {
if(x == T) return f;
int temp = f;
for(int i = head[x]; i; i = next[i])
if(flow[i] && temp && deep[aim[i]] == deep[x] + 1) {
int away = Dinic(aim[i],min(flow[i],temp));
if(!away) deep[aim[i]] = 0;
flow[i] -= away;
flow[i^1] += away;
temp -= away;
}
return f - temp;
}
}solver;
int P,Q,R,D;
int src[50][50][50],num[50][50][50],cnt;
int main()
{
cin >> P >> Q >> R >> D;
for(int i = 1; i <= R; ++i)
for(int j = 1; j <= P; ++j)
for(int k = 1; k <= Q; ++k) {
scanf("%d",&src[i][j][k]),num[i][j][k] = ++cnt;
solver.Insert(num[i][j][k] << 1,num[i][j][k] << 1|1,src[i][j][k]);
}
for(int i = 1; i <= P; ++i)
for(int j = 1; j <= Q; ++j) {
solver.Insert(S,num[1][i][j] << 1,INF);
solver.Insert(num[R][i][j] << 1|1,T,INF);
}
for(int i = 1; i <= R; ++i)
for(int j = 1; j <= P; ++j)
for(int k = 1; k <= Q; ++k) {
if(i != R)
solver.Insert(num[i][j][k] << 1|1,num[i + 1][j][k] << 1,INF);
for(int d = 1; d <= 4; ++d) {
int fx = j + dx[d],fy = k + dy[d];
if(!fx || !fy || fx > P || fy > Q) continue;
if(i - D > 0) solver.Insert(num[i][j][k] << 1,num[i - D][fx][fy] << 1,INF);
}
}
int max_flow = 0;
while(solver.BFS())
max_flow += solver.Dinic(S,INF);
cout << max_flow << endl;
return 0;
}原文:http://blog.csdn.net/jiangyuze831/article/details/42558063