题目大意:给出n和k,表示说书架上有n本书,可以取出k次书,每次取出后可以任意放回书架中,书的编号为25~32八种,定义该书架的混乱程度为片段的个数。求出最小的混乱度。
解题思路:dp[i][j][s][x],表示说在第i本书的时候,取出了j本书后,s剩下的书(二进制),x最后一本书的编号的情况下混乱度最小值。
状态转移方程:
if(x == a)dp[i][j][s][x] = min(dp[i][j][s][x], dp[i-1][j][s][x]);
else 取出:dp[i][j+1][s][x] = mid(dp[i][j+1][s][x],dp[i-1][j][s][x]);
不取出:dp[i][j][s|(1<<a)][a] = min(dp[i][j][s|(1<<a)][a], dp[i-1][j][s][x]+1);
然后用一个变量记录下说有什么种类的书,s(还剩下的书),all(总共有什么样的书),s^all就是被挑出来的放进去要增加混乱度的书,最后在放进去。
滚动数组优化内存。
#include <stdio.h> #include <string.h> #include <algorithm> using namespace std; const int N = 105; const int M = (1<<8); const int INF = 0x3f3f3f3f; int n, K, dp[2][N][M+5][10]; int bitcount(int s) { return s == 0 ? 0 : bitcount(s>>1) + (s&1); } int main () { int cas = 1, a; while (scanf("%d%d", &n, &K) == 2 && n + K) { int all = 0; memset(dp[0], INF, sizeof(dp[0])); for (int i = 0; i < n; i++) { scanf("%d", &a); a -= 25; int p = i&1; int q = !p; memset(dp[q], INF, sizeof(dp[q])); dp[q][i][1<<a][a] = 1; for (int j = 0; j <= min(K, i); j++) { for (int s = all; s; s = (s-1)&all) { for (int x = 0; (1<<x) <= s; x++) { if (dp[p][j][s][x] != INF) { if (x == a) dp[q][j][s][x] = min(dp[q][j][s][x], dp[p][j][s][x]); else { dp[q][j][s|(1<<a)][a] = min(dp[q][j][s|(1<<a)][a], dp[p][j][s][x]+1); dp[q][j+1][s][x] = min(dp[q][j+1][s][x], dp[p][j][s][x]); } } } } } all |= (1<<a); } int ans = INF; for (int i = 0; i <= K; i++) { for (int s = all; s; s = (s-1)&all) { for (int x = 0; (1<<x) <= s; x++) if (dp[n&1][i][s][x] != INF) { ans = min(dp[n&1][i][s][x]+bitcount(s^all), ans); } } } printf("Case %d: %d\n\n", cas++, ans); } return 0; }
uva 12235 - Help Bubu(dp),布布扣,bubuko.com
原文:http://blog.csdn.net/keshuai19940722/article/details/20214089