/* Main idea 这道题可以动态规划。二维的动态规划。 状态定义:G[i][j]为以(i,j)为左上角顶点的正方形的最大边长。 边界条件:G[i][j]为初始读入的矩阵。 状态转移方程: G[i][j]=min{ G[i+1][j] , G[i][j+1] , G[i+1][j+1] } + 1; 解析: G[i+1][j] , G[i][j+1] , G[i+1][j+1]分别为(i,j)向下、向右、向右下一格的状况。 在(n-1,n-1)当且仅当三者都为1的时候,正方形才能扩充。从最右下向上,依次扩充即可。 refer to byvoid; Note Dynamic programming‘s way to count the number of squares for each size; This is a way of collecting solution during DP; */ /* Executing... Test 1: TEST OK [0.000 secs, 3748 KB] Test 2: TEST OK [0.000 secs, 3748 KB] Test 3: TEST OK [0.000 secs, 3748 KB] Test 4: TEST OK [0.000 secs, 3748 KB] Test 5: TEST OK [0.000 secs, 3748 KB] Test 6: TEST OK [0.011 secs, 3748 KB] Test 7: TEST OK [0.054 secs, 3748 KB] All tests OK. */ /* ID: haolink1 PROG: range LANG: C++ */ //#include <iostream> #include <fstream> #include <string> using namespace std; const int MAX = 250; int dp[MAX][MAX]; int ans[MAX+1]; int N = 0; ifstream fin("range.in"); ofstream cout("range.out"); void Init(){ fin >> N; string str; for(int i = 0; i < N; i++){ fin >> str; for(int j = 0; j < N; j++){ dp[i][j] = str[j] - 48; } } } int Min(int a,int b,int c){ int min = a <= b ? a : b; min = min <= c ? min : c; return min; } void Dynamic(){ for(int i = N - 2; i >= 0; i--){ for(int j = N - 2; j >= 0; j--){ if(dp[i][j])//Note dp[i][j] must first be 1; dp[i][j] = Min(dp[i+1][j],dp[i+1][j+1],dp[i][j+1]) + 1; if(dp[i][j] > 1){ for(int k = 2; k <= dp[i][j]; k++){//count the size of square whose upleft point is(i,j); ans[k]++; } } } } } void Print(){ for(int i = 2; i <= N; i++){ if(ans[i]){ cout << i <<" "<< ans[i] << endl; } } } int main(){ Init(); Dynamic(); Print(); return 0; }
USACO 3.3 Home on the Range (range),布布扣,bubuko.com
USACO 3.3 Home on the Range (range)
原文:http://blog.csdn.net/damonhao/article/details/20214847