/* 可以算是一道数学题吧。如果知道皮克定理就好写多了。 皮克定理说明了其面积S和内部格点数目a、边上格点数目b的关系:S = a + b/2 - 1。 根据三角形面积公式求出S。如果知道了b,那么三角形内部格点数目a也就求出来了。 可以证明,一条直线((0,0),(n,m))上的格点数等于n与m的最大公约数+1。 即b=gcd(n,m)+1. gcd(n,m)为n与m的最大公约数。 代入皮克公式,即可求出a的值。 refer to byvoid; */ /* Executing... Test 1: TEST OK [0.011 secs, 3500 KB] Test 2: TEST OK [0.000 secs, 3500 KB] Test 3: TEST OK [0.000 secs, 3500 KB] Test 4: TEST OK [0.000 secs, 3500 KB] Test 5: TEST OK [0.000 secs, 3500 KB] Test 6: TEST OK [0.000 secs, 3500 KB] Test 7: TEST OK [0.000 secs, 3500 KB] Test 8: TEST OK [0.011 secs, 3500 KB] Test 9: TEST OK [0.000 secs, 3500 KB] Test 10: TEST OK [0.000 secs, 3500 KB] Test 11: TEST OK [0.000 secs, 3500 KB] Test 12: TEST OK [0.000 secs, 3500 KB] All tests OK. */ /* ID: haolink1 PROG: fence9 LANG: C++ */ //#include <iostream> #include <fstream> #include <stdlib.h> /* abs */ using namespace std; ifstream fin("fence9.in"); ofstream cout("fence9.out"); int Gcd(int a, int b){ int tmp; while(b > 0){ tmp = a % b; a = b; b = tmp; } return a; } int Compute(int n,int m,int p){ double S,b; S = p * m / 2.0; int w1 = Gcd(m,n); int w2 = Gcd(m,abs(n-p)); b = w1 + w2 + p; return S - b/2.0 + 1; } int main(){ int n = 0,m = 0,p = 0; fin >> n >> m >> p; cout << Compute(n,m,p) << endl; return 0; }
USACO 3.4 Electric Fence (fence9),布布扣,bubuko.com
USACO 3.4 Electric Fence (fence9)
原文:http://blog.csdn.net/damonhao/article/details/20215013