申明:本文主要参考书籍<STL 源码剖析>
stl vector是序列容器模板类,其支持指定类型的数据存储和随机访问;
对于vector而言,如果在其尾部插入或删除项,其时间复杂度为常量;如果在中间或者头部插入或者删除项,则其时间复杂度为线性的,因为为了保持原本的相对次序,在插入或者删除项之后的所有项都必须进行移动;简单的说:vector类似于动态数组的概念,该动态数据能容纳任何类型的对象,并且可以按需动态伸缩空间;
总结:由于vector维护的是一个连续线性空间,所以vector支持随机存取。
注意:vector动态增加大小时,并不是在原空间之后持续新空间(因为无法保证原空间之后尚有可供配置的空间),而是以原大小的两倍另外配置一块较大的空间,然后将原内容拷贝过来,然后才开始在原内容之后构造新元素,并释放原空间。因此,对vector的任何操作,一旦引起空间重新配置,指向原vector的所有迭代器就都失效了。
vector<Element>v;
vector<Element>v(10);
vector<Element>v(10,Element());
vector<Element>v(v1);
添加元素:使用push_back函数将元素添加至vector的末尾等其他方式
获得vector的元素个数:使用size函数可以获得vector的元素个数,如果判断vector 的元素个数是否为0,建议使用empty函数
给定一个
vector<int> v;
表达式v[0]生产一个指向vector中第一个元素的引用,所以,&v[0]是指向那个首元素的指针。vector中的元素被C++标准限定为存储在连续内存中,就像是一个数组,所以,如果我们想要传递v给这样的C风格的API:
void doSomething(const int* pInts, size_t numInts);
我们可以这么做:
doSomething(&v[0], v.size());
也许吧。可能吧。唯一的问题就是,如果v是空的。如果这样的话,v.size()是0,而&v[0]试图产生一个指向根本就不存在的东西的指针。这不是件好事。其结果未定义。一个较安全的方法是这样:
if (!v.empty()) {
doSomething(&v[0], v.size());
}
如果你在一个不好的环境中,你可能会碰到一些半吊子的人物,他们会告诉你说可以用v.begin()代替&v[0],因为(这些讨厌的家伙将会告诉你)begin返回指向vector内部的迭代器,而对于vector,其迭代器实际上是指针。
那经常是正确的,并不总是如此,你不该依赖于此。
begin的返回类型是iterator,而不是一个指针,当你需要一个指向vector内部数据的指针时绝不该使用begin。如果你基于某些原因决定键入v.begin(),就应该键入&*v.begin(),因为这将会产生和&v[0]相同的指针,这样可以让你有更多的打字机会,而且让其他要弄懂你代码得人感觉到更晦涩。坦白地说,如果你正在和告诉你使用v.begin()代替&v[0]的人打交道的话,你该重新考虑一下你的社交圈了。
#include<iostream> using namespace std; #include<memory.h> // alloc是SGI STL的空间配置器 template <class T, class Alloc = alloc> class vector { public: // vector的嵌套类型定义,typedefs用于提供iterator_traits<I>支持 typedef T value_type; typedef value_type* pointer; typedef value_type* iterator; typedef value_type& reference; typedef size_t size_type; typedef ptrdiff_t difference_type; protected: // 这个提供STL标准的allocator接口 typedef simple_alloc <value_type, Alloc> data_allocator; iterator start; // 表示目前使用空间的头 iterator finish; // 表示目前使用空间的尾 iterator end_of_storage; // 表示实际分配内存空间的尾 void insert_aux(iterator position, const T& x); // 释放分配的内存空间 void deallocate() { // 由于使用的是data_allocator进行内存空间的分配, // 所以需要同样使用data_allocator::deallocate()进行释放 // 如果直接释放, 对于data_allocator内部使用内存池的版本 // 就会发生错误 if (start) data_allocator::deallocate(start, end_of_storage - start); } void fill_initialize(size_type n, const T& value) { start = allocate_and_fill(n, value); finish = start + n; // 设置当前使用内存空间的结束点 // 构造阶段, 此实作不多分配内存, // 所以要设置内存空间结束点和, 已经使用的内存空间结束点相同 end_of_storage = finish; } public: // 获取几种迭代器 iterator begin() { return start; } iterator end() { return finish; } // 返回当前对象个数 size_type size() const { return size_type(end() - begin()); } size_type max_size() const { return size_type(-1) / sizeof(T); } // 返回重新分配内存前最多能存储的对象个数 size_type capacity() const { return size_type(end_of_storage - begin()); } bool empty() const { return begin() == end(); } reference operator[](size_type n) { return *(begin() + n); } // 本实作中默认构造出的vector不分配内存空间 vector() : start(0), finish(0), end_of_storage(0) {} vector(size_type n, const T& value) { fill_initialize(n, value); } vector(int n, const T& value) { fill_initialize(n, value); } vector(long n, const T& value) { fill_initialize(n, value); } // 需要对象提供默认构造函数 explicit vector(size_type n) { fill_initialize(n, T()); } vector(const vector<T, Alloc>& x) { start = allocate_and_copy(x.end() - x.begin(), x.begin(), x.end()); finish = start + (x.end() - x.begin()); end_of_storage = finish; } ~vector() { // 析构对象 destroy(start, finish); // 释放内存 deallocate(); } vector<T, Alloc>& operator=(const vector<T, Alloc>& x); // 提供访问函数 reference front() { return *begin(); } reference back() { return *(end() - 1); } //////////////////////////////////////////////////////////////////////////////// // 向容器尾追加一个元素, 可能导致内存重新分配 //////////////////////////////////////////////////////////////////////////////// // push_back(const T& x) // | // |---------------- 容量已满? // | // ---------------------------- // No | | Yes // | | // ↓ ↓ // construct(finish, x); insert_aux(end(), x); // ++finish; | // |------ 内存不足, 重新分配 // | 大小为原来的2倍 // new_finish = data_allocator::allocate(len); <stl_alloc.h> // uninitialized_copy(start, position, new_start); <stl_uninitialized.h> // construct(new_finish, x); <stl_construct.h> // ++new_finish; // uninitialized_copy(position, finish, new_finish); <stl_uninitialized.h> //////////////////////////////////////////////////////////////////////////////// void push_back(const T& x) { // 内存满足条件则直接追加元素, 否则需要重新分配内存空间 if (finish != end_of_storage) { construct(finish, x); ++finish; } else insert_aux(end(), x); } //////////////////////////////////////////////////////////////////////////////// // 在指定位置插入元素 //////////////////////////////////////////////////////////////////////////////// // insert(iterator position, const T& x) // | // |------------ 容量是否足够 && 是否是end()? // | // ------------------------------------------- // No | | Yes // | | // ↓ ↓ // insert_aux(position, x); construct(finish, x); // | ++finish; // |-------- 容量是否够用? // | // -------------------------------------------------- // Yes | | No // | | // ↓ | // construct(finish, *(finish - 1)); | // ++finish; | // T x_copy = x; | // copy_backward(position, finish - 2, finish - 1); | // *position = x_copy; | // ↓ // data_allocator::allocate(len); <stl_alloc.h> // uninitialized_copy(start, position, new_start); <stl_uninitialized.h> // construct(new_finish, x); <stl_construct.h> // ++new_finish; // uninitialized_copy(position, finish, new_finish); <stl_uninitialized.h> // destroy(begin(), end()); <stl_construct.h> // deallocate(); //////////////////////////////////////////////////////////////////////////////// iterator insert(iterator position, const T& x) { size_type n = position - begin(); if (finish != end_of_storage && position == end()) { construct(finish, x); ++finish; } else insert_aux(position, x); return begin() + n; } iterator insert(iterator position) { return insert(position, T()); } void pop_back() { --finish; destroy(finish); } iterator erase(iterator position) { if (position + 1 != end()) copy(position + 1, finish, position); --finish; destroy(finish); return position; } iterator erase(iterator first, iterator last) { iterator i = copy(last, finish, first); // 析构掉需要析构的元素 destroy(i, finish); finish = finish - (last - first); return first; } // 调整size, 但是并不会重新分配内存空间 void resize(size_type new_size, const T& x) { if (new_size < size()) erase(begin() + new_size, end()); else insert(end(), new_size - size(), x); } void resize(size_type new_size) { resize(new_size, T()); } void clear() { erase(begin(), end()); } protected: // 分配空间, 并且复制对象到分配的空间处 iterator allocate_and_fill(size_type n, const T& x) { iterator result = data_allocator::allocate(n); uninitialized_fill_n(result, n, x); return result; } // 提供插入操作 //////////////////////////////////////////////////////////////////////////////// // insert_aux(iterator position, const T& x) // | // |---------------- 容量是否足够? // ↓ // ----------------------------------------- // Yes | | No // | | // ↓ | // 从opsition开始, 整体向后移动一个位置 | // construct(finish, *(finish - 1)); | // ++finish; | // T x_copy = x; | // copy_backward(position, finish - 2, finish - 1); | // *position = x_copy; | // ↓ // data_allocator::allocate(len); // uninitialized_copy(start, position, new_start); // construct(new_finish, x); // ++new_finish; // uninitialized_copy(position, finish, new_finish); // destroy(begin(), end()); // deallocate(); //////////////////////////////////////////////////////////////////////////////// template <class T, class Alloc> void insert_aux(iterator position, const T& x) { if (finish != end_of_storage) // 还有备用空间 { // 在备用空间起始处构造一个元素,并以vector最后一个元素值为其初值 construct(finish, *(finish - 1)); ++finish; T x_copy = x; copy_backward(position, finish - 2, finish - 1); *position = x_copy; } else // 已无备用空间 { const size_type old_size = size(); const size_type len = old_size != 0 ? 2 * old_size : 1; // 以上配置元素:如果大小为0,则配置1(个元素大小) // 如果大小不为0,则配置原来大小的两倍 // 前半段用来放置原数据,后半段准备用来放置新数据 iterator new_start = data_allocator::allocate(len); // 实际配置 iterator new_finish = new_start; // 将内存重新配置 try { // 将原vector的安插点以前的内容拷贝到新vector new_finish = uninitialized_copy(start, position, new_start); // 为新元素设定初值 x construct(new_finish, x); // 调整水位 ++new_finish; // 将安插点以后的原内容也拷贝过来 new_finish = uninitialized_copy(position, finish, new_finish); } catch(...) { // 回滚操作 destroy(new_start, new_finish); data_allocator::deallocate(new_start, len); throw; } // 析构并释放原vector destroy(begin(), end()); deallocate(); // 调整迭代器,指向新vector start = new_start; finish = new_finish; end_of_storage = new_start + len; } } //////////////////////////////////////////////////////////////////////////////// // 在指定位置插入n个元素 //////////////////////////////////////////////////////////////////////////////// // insert(iterator position, size_type n, const T& x) // | // |---------------- 插入元素个数是否为0? // ↓ // ----------------------------------------- // No | | Yes // | | // | ↓ // | return; // |----------- 内存是否足够? // | // ------------------------------------------------- // Yes | | No // | | // |------ (finish - position) > n? | // | 分别调整指针 | // ↓ | // ---------------------------- | // No | | Yes | // | | | // ↓ ↓ | // 插入操作, 调整指针 插入操作, 调整指针 | // ↓ // data_allocator::allocate(len); // new_finish = uninitialized_copy(start, position, new_start); // new_finish = uninitialized_fill_n(new_finish, n, x); // new_finish = uninitialized_copy(position, finish, new_finish); // destroy(start, finish); // deallocate(); //////////////////////////////////////////////////////////////////////////////// template <class T, class Alloc> void insert(iterator position, size_type n, const T& x) { // 如果n为0则不进行任何操作 if (n != 0) { if (size_type(end_of_storage - finish) >= n) { // 剩下的备用空间大于等于“新增元素的个数” T x_copy = x; // 以下计算插入点之后的现有元素个数 const size_type elems_after = finish - position; iterator old_finish = finish; if (elems_after > n) { // 插入点之后的现有元素个数 大于 新增元素个数 uninitialized_copy(finish - n, finish, finish); finish += n; // 将vector 尾端标记后移 copy_backward(position, old_finish - n, old_finish); fill(position, position + n, x_copy); // 从插入点开始填入新值 } else { // 插入点之后的现有元素个数 小于等于 新增元素个数 uninitialized_fill_n(finish, n - elems_after, x_copy); finish += n - elems_after; uninitialized_copy(position, old_finish, finish); finish += elems_after; fill(position, old_finish, x_copy); } } else { // 剩下的备用空间小于“新增元素个数”(那就必须配置额外的内存) // 首先决定新长度:就长度的两倍 , 或旧长度+新增元素个数 const size_type old_size = size(); const size_type len = old_size + max(old_size, n); // 以下配置新的vector空间 iterator new_start = data_allocator::allocate(len); iterator new_finish = new_start; __STL_TRY { // 以下首先将旧的vector的插入点之前的元素复制到新空间 new_finish = uninitialized_copy(start, position, new_start); // 以下再将新增元素(初值皆为n)填入新空间 new_finish = uninitialized_fill_n(new_finish, n, x); // 以下再将旧vector的插入点之后的元素复制到新空间 new_finish = uninitialized_copy(position, finish, new_finish); } # ifdef __STL_USE_EXCEPTIONS catch(...) { destroy(new_start, new_finish); data_allocator::deallocate(new_start, len); throw; } # endif /* __STL_USE_EXCEPTIONS */ destroy(start, finish); deallocate(); start = new_start; finish = new_finish; end_of_storage = new_start + len; } } } };
标准库还提供了另一种检测元素的方法:使用迭代器(iterator)。迭代器是一种允许程序员检查容器内元素,并实现元素遍历的数据类型。
标准库为每一种标准容器(包括vector)定义了一种迭代器类型。迭代器类型提供了比下标操作更一般化的方法:所有的标准库容器都定义了相应的迭代器类型,而只有少数的容器支持下标操作。因为迭代器对所有的容器都适用,现代C++程序更倾向于使用迭代器而不是下标操作访问容器元素,即使对支持下标操作的vector类型也这样。
vector<int>::iterator iter;
这条语句定义了一个名为iter的变量,它的数据类型是由vector<int>定义的iterator类型。每个标准库容器类型都定义了一个名为iterator的成员,这里的iterator与迭代器实际类型的含义相同。
vector的迭代器具体的使用可以参考<STL 源码剖析>
值得特殊说明:迭代器和迭代器类型
首次遇到有关迭代器的术语时可能会困惑不解,产生困惑的原因之一是由于本书中同一个术语iterator表示两个不同的事物。一般性提及的是迭代器的概念;而特别提及的则是由容器定义的具体的iterator类型,如vector<int>。
重点要理解的是,定义了许多用作迭代器的类型,这些类型在概念上是相关的。若一种类型支持一组确定的行为(这些行为允许程序员遍历容器内的元素,并允许程序员访问这些元素值),我们就称这种类型为迭代器。
不同的容器类定义了自己的iterator类型,用于访问容器内的元素。换句话说,每个容器定义了一种名为iterator的类型,而这种类型支持(概念上的)迭代器的各种行为
总结:vector 的迭代器当然还是很复杂,自己可以去深究,我也只是简单的抛出概念。
vector数据结构,采用的是连续的线性空间,属于线性存储。他采用3个迭代器_First、_Last、_End来指向分配来的线性空间的不同范围,下面是声明3个迭代器变量的源代码
template<class _Ty, class _A= allocator< _Ty> > class vector{ ... protected: iterator _First, _Last, _End; };
_First指向使用空间的头部,_Last指向使用空间大小(size)的尾部,_End指向使用空间容量(capacity)的尾部。借助一个小示例:
int data[6]={3,5,7,9,2,4}; vector<int> vdata(data, data+6); vdata.push_back(6); ...vector初始化时,申请的空间大小为6,存放下了data中的6个元素。当向vdata中插入第7个元素“6”时,vector利用自己的扩充机制重新申请空间,数据存放
结构如下图所示:
![]()
当插入第7个元素“6”时,vector发现自己的空间不够了,于是申请新的大小为12的内存空间(自增一倍),并将前面已有数据复制到新空间的前部,然后插入第7个元素。此时_Last迭代器指向最后一个有效元素,而_End迭代器指向vector的最后有效空间位置。我们利用vector的成员函数size可以获得当前vector的大小,此时为7;利用capacity成员函数获取当前vector的容量,此时为12。
5 vector对象的操作
操作调用方式 |
操作说明 |
v.empty() |
判断v是否为空 |
v.size() |
返回v中元素的个数 |
v.push_back(t) |
向v的末尾添加一个元素 |
V[n] |
返回v中位置为n的元素 |
V1 = v2 |
把v1中元素替换为v2中元素副本 |
V1==v2 |
判断是否相等 |
!=, <, <=, >, >= |
直接用于vector对象的相互比较 |
1.push_back 在数组的最后添加一个数据
2.pop_back 去掉数组的最后一个数据
3.at 得到编号位置的数据
4.begin 得到数组头的指针
5.end 得到数组的最后一个单元+1的指针
6.front 得到数组头的引用
7.back 得到数组的最后一个单元的引用
8.max_size 得到vector最大可以是多大
9.capacity 当前vector分配的大小
10.size 当前使用数据的大小
11.resize 改变当前使用数据的大小,如果它比当前使用的大,者填充默认值
12.reserve 改变当前vecotr所分配空间的大小
13.erase 删除指针指向的数据项
14.clear 清空当前的vector
15.rbegin 将vector反转后的开始指针返回(其实就是原来的end-1)
16.rend 将vector反转构的结束指针返回(其实就是原来的begin-1)
17.empty 判断vector是否为空
18.swap 与另一个vector交换数据
注,以下是一些需要注意的地方
? vector和string一样,长度、下标等类型是size_type,但是vector获取size_type时,需要指定类型,如vector<int>::size_type这样的方式
? vector的下标操作,例如v[i],只能用于操作已经存在的元素,可以进行覆盖、获取等,但是不能通过v[i++]这种方式来给一个vector容器添加元素,该功能需要用push_back操作完成,下标不具备该功能
? C++程序员习惯优先使用!=而不是<来编写循环判断条件
STL 源码剖析序列式容器之vector(四),布布扣,bubuko.com
原文:http://blog.csdn.net/u010236550/article/details/20216047