题目:http://codeforces.com/contest/397/problem/D
关键是要用数学归纳法证明:当n + 1 = p, p 为质数时, = 1 / 2 - 1 / p。
证明过程:当p = 3时,显然成立,假设q为下一个质数,则 原式 = 1 / 2 - 1 / p + (q - p) / (p*q) = 1/2 - 1/q。得证。
代码:
#include <algorithm> #include <functional> #include <numeric> #include <utility> #include <iostream> #include <sstream> #include <iomanip> #include <bitset> #include <string> #include <vector> #include <stack> #include <deque> #include <queue> #include <set> #include <map> #include <cstdio> #include <cstdlib> #include <cctype> #include <cmath> #include <cstring> #include <ctime> #include <climits> using namespace std; typedef pair<int, int> pii; typedef long long llong; typedef pair<llong, llong> pll; #define mkp make_pair #define CHECKTIME() printf("%.2lf\n", (double)clock() / CLOCKS_PER_SEC) const int MOD = 1e9 + 7; bool isPrime(long long n) { int lim = floor( sqrt(n * 1.0 + 0.5) ); for (int i = 2; i <= lim; i++) { if (n % i == 0) { return false; } } return true; } long long gcd(long long a, long long b) { if (a < b) { swap(a, b); } while (b != 0) { long long t = a % b; a = b; b = t; } return a; } int main() { #ifdef LOCAL_DEBUG freopen("in.txt", "r", stdin); #endif int t, n; cin >> t; for (int i = 0; i < t; i++) { cin >> n; long long p, q; p = n + 1; while (!isPrime(p)) { --p; } q = n + 1; while (!isPrime(q)) { ++q; } // 1/2 - 1/p + (n - p + 1) * 1/(p * q) long long t1 = p * q - 2 * q + 2 * (n - p + 1); long long t2 = 2 * p * q; long long g = gcd(t1, t2); cout << t1 / g << "/" << t2 / g << endl; } return 0; }
CF232 D2D:On Sum of Fractions,math,布布扣,bubuko.com
CF232 D2D:On Sum of Fractions,math
原文:http://blog.csdn.net/xzz_hust/article/details/20222049