跟以前那类题目做法相同,对于这棵树,进行dfs,同时记录当前层数距离跟的关系,用奇偶数来表示,然后再以各个节点被dfs的时间戳 来建立区间 让树状数组映射上去,最后奇偶分开,加的在一个树状数组里,减去的在另一个里面,然后 最后求单点值的时候 就是自己这个点 所属的 距离根节点的关系,也就是自己应该加上的值,再减去对应的另一个树状数组里的应该减去的值,然后 一开始 各个节点本身具有的值 并没有加进树状数组里,还得加上原本具有的值,这样就是答案了
然后又用线段树做了一下,也是以时间戳来搞,同时记录这个节点距离根的奇偶性,然后也是建立两颗线段树,一个记录奇数处理,一个记录偶数处理,结果不知哪里写错了,又改了很久,不行又重新写了一下,真是学啥忘啥。。。
树状数组的:
int n;
int m;
int c[2][200000 * 2 + 55];
typedef struct Node {
	int l,r,val;
	int now;
};
Node node[200000 + 55];
vector<int > G[200000 + 55];
int cnt;
void init() {
	memset(c,0,sizeof(c));
	for(int i=0;i<200000 + 55;i++)G[i].clear();
}
bool input() {
	while(cin>>n>>m) {
		for(int i=1;i<=n;i++)cin>>node[i].val;
		int tmp = n - 1;
		while(tmp--) {
			int u,v;
			scanf("%d %d",&u,&v);
			G[u].push_back(v);
			G[v].push_back(u);
		}
		return false;
	}
	return true;
}
int lowbit(int x) {
	return x&(-x);
}
void add(int i,int val,int *aa) {
	while(i <= 2 * n) {
		aa[i] += val;
		i += lowbit(i);
	}
}
int get_sum(int i,int *aa) {
	int sum = 0;
	while(i > 0) {
		sum += aa[i];
		i -= lowbit(i);
	}
	return sum;
}
void dfs(int u,int pre,int tot) {
	node[u].l = cnt++;
	node[u].now = tot;
	for(int i=0;i<G[u].size();i++) {
		int v = G[u][i];
		if(v == pre)continue;
		dfs(v,u,tot^1);
	}
	node[u].r = cnt++;
}
void cal() {
	cnt = 1;
	dfs(1,-1,0);
	while(m--) {
		int type;
		cin>>type;
		if(type == 1) {
			int x,y;
			cin>>x>>y;
			//int tmp = node[x].now;
			//int aa = node[x].l;
			//int bb = node[x].r;
			add(node[x].l,y,c[node[x].now]);
			add(node[x].r + 1,-y,c[node[x].now]);
		}
		else {
			int x;
			cin>>x;
			//int aa = (get_sum(node[x].l,c[node[x].d]) /*- get_sum(node[x].l - 1,c[node[x].d])*/);
			//int bb = (get_sum(node[x].l,c[node[x].d^1])/* - get_sum(node[x].l - 1,c[node[x].d^1])*/);
			//int cc = 0;
			int ans = get_sum(node[x].l,c[node[x].now]) - get_sum(node[x].l,c[node[x].now^1]);
			ans += node[x].val;
			cout<<ans<<endl;
		}
	}
}
void output() {
}
int main() {
	while(true) {
		init();
		if(input())return 0;
		cal();
		output();
	}
	return 0;
}线段树的:
const int N = 200000 + 55;
int n;
int m;
int nnum[N + 55];
int le[N + 55],ri[N + 55],belong[N + 55];
int head[N + 55];
typedef struct Node {
	int l,r;
	ll sum;
	int lazy;
};
Node tree_even[N * 4 + 55],tree_odd[N * 4 + 55];
typedef struct NODE {
	int fro,to;
	int nex;
};
NODE edge[2 * N + 55];
int tot;
int cnt;
void add(int u,int v) {
	edge[tot].fro = u;
	edge[tot].to = v;
	edge[tot].nex = head[u];
	head[u] = tot++;
}
void dfs(int u,int pre,int d) {
	le[u] = ++cnt;
	for(int i=head[u];i!=-1;i=edge[i].nex) {
		int v = edge[i].to;
		if(v == pre)continue;
		dfs(v,u,d^1);
	}
	belong[le[u]] = d;
	ri[le[u]] = cnt;
}
void push_up(int id,Node *tree) {
	tree[id].sum = tree[id<<1].sum + tree[id<<1|1].sum;
}
void push_down(int id,Node *tree) {
	if(tree[id].lazy == 0)return ;
	tree[id].sum += (tree[id].r - tree[id].l + 1) * tree[id].lazy;
	if(tree[id].l == tree[id].r) {
		tree[id].lazy = 0;
		return ;
	}
	tree[id<<1].lazy += tree[id].lazy;
	tree[id<<1|1].lazy += tree[id].lazy;
	tree[id].lazy = 0;
}
void build(int l,int r,int id,Node *tree) {
	tree[id].l = l;
	tree[id].r = r;
	tree[id].lazy = 0;
	if(l == r) {
		tree[id].sum = 0ll;
		return ;
	}
	int mid = (l + r)>>1;
	build(l,mid,id<<1,tree);
	build(mid + 1,r,id<<1|1,tree);
	push_up(id,tree);
}
void update(int l,int r,int id,ll val,Node *tree) {
	if(tree[id].l == l && tree[id].r == r) {
		tree[id].lazy += val;
		push_down(id,tree);
		return ;
	}
	push_down(id,tree);
	int mid = (tree[id].l + tree[id].r)>>1;
	if(r <= mid)update(l,r,id<<1,val,tree);
	else if(l > mid)update(l,r,id<<1|1,val,tree);
	else {
		update(l,mid,id<<1,val,tree);
		update(mid + 1,r,id<<1|1,val,tree);
	}
	push_up(id,tree);
}
ll query(int l,int r,int id,Node *tree) {
	if(tree[id].l == l && tree[id].r == r) {
		push_down(id,tree);
		return tree[id].sum;
	}
	push_down(id,tree);
	int mid = (tree[id].l + tree[id].r)>>1;
	ll ret = 0ll;
	if(r <= mid)ret += query(l,r,id<<1,tree);
	else if(l > mid)ret += query(l,r,id<<1|1,tree);
	else {
		ret += query(l,mid,id<<1,tree);
		ret += query(mid + 1,r,id<<1|1,tree);
	}
	return ret;
}
void init() {
	memset(tree_even,0,sizeof(tree_even));
	memset(tree_odd,0,sizeof(tree_odd));
	memset(head,-1,sizeof(head));
	tot = 1;
	cnt = 0;
}
bool input() {
	while(cin>>n>>m) {
		for(int i=1;i<=n;i++)cin>>nnum[i];
		for(int i=1;i<n;i++) {
			int u,v;
			cin>>u>>v;
			add(u,v);
			add(v,u);
		}
		return false;
	}
	return true;
}
void cal() {
	dfs(1,-1,1);
	build(1,n,1,tree_even);
	build(1,n,1,tree_odd);
	while(m--) {
		int type;
		cin>>type;
		if(type == 1) {
			int x,y;
			cin>>x>>y;
			int left = le[x];
			int right = ri[left];
			if(belong[left]&1) update(left,right,1,y,tree_odd);
			else update(left,right,1,y,tree_even);
		}
		else {
			int x;
			cin>>x;
			int left = le[x];
			ll ans;
			if(belong[left]&1)
				ans = query(left,left,1,tree_odd) - query(left,left,1,tree_even);
			else
				ans = query(left,left,1,tree_even) - query(left,left,1,tree_odd);
			ans += nnum[x];
			cout<<ans<<endl;
		}
	}
}
void output() {
}
int main() {
	while(true) {
		init();
		if(input())return 0;
		cal();
		output();
	}
	return 0;
}Codeforces Round #225 (Div. 1) C 树状数组 || 线段树
原文:http://blog.csdn.net/yitiaodacaidog/article/details/41389473