首页 > 其他 > 详细

LeetCode | Distinct Subsequences

时间:2014-02-26 23:39:15      阅读:607      评论:0      收藏:0      [点我收藏+]

题目

Given a string S and a string T, count the number of distinct subsequences of T in S.

A subsequence of a string is a new string which is formed from the original string by deleting some (can be none) of the characters without disturbing the relative positions of the remaining characters. (ie, "ACE" is a subsequence of "ABCDE" while "AEC" is not).

Here is an example:
S = "rabbbit"T = "rabbit"

Return 3.

分析

动态规划的经典题目了,找到递推关系后,仍然需要注意实现方法,这里列出了逐步优化的三种方法:

解法1:基于备忘录的递归方法,能AC,但是效率不高;

解法2:用表格的方法画出递推关系后,可以写出非递归的方法,但是需要O(n^2)的空间复杂度;

解法3:进一步分析递推关系(仔细看看画出的递推表格),可以发现在实现非递归的方法时,只需要一维数组就足够了,即O(n)的空间复杂度。

解法1

import java.util.HashMap;
import java.util.Map;

public class DistinctSubsequences {
	private char[] sCharArray;
	private char[] tCharArray;
	private int M;
	private int N;
	private Map<Integer, Integer> records;

	public int numDistinct(String S, String T) {
		M = S.length();
		N = T.length();
		if (N > M) {
			return 0;
		}
		sCharArray = S.toCharArray();
		tCharArray = T.toCharArray();
		records = new HashMap<Integer, Integer>();
		return solve(0, 0);
	}

	private int solve(int m, int n) {
		int key = M * m + n;
		if (records.containsKey(key)) {
			return records.get(key);
		}
		if (n >= N) {
			records.put(key, 1);
			return 1;
		}
		if (m >= M) {
			records.put(key, 0);
			return 0;
		}

		for (int i = m; i < M; ++i) {
			if (sCharArray[i] == tCharArray[n]) {
				int result = solve(i + 1, n + 1) + solve(i + 1, n);
				records.put(key, result);
				return result;
			}
		}
		return 0;
	}
}
解法2

public class DistinctSubsequences {
	public int numDistinct(String S, String T) {
		int M = S.length();
		int N = T.length();
		if (N > M) {
			return 0;
		}

		int[][] dp = new int[M + 1][N + 1];
		// init
		for (int i = N; i < M + 1; ++i) {
			dp[i][N] = 1;
		}

		// dp
		for (int i = M - 1; i >= 0; --i) {
			for (int j = (i >= N - 1 ? N - 1 : i); j >= 0; --j) {
				dp[i][j] = dp[i + 1][j]
						+ (S.charAt(i) == T.charAt(j) ? dp[i + 1][j + 1] : 0);
			}
		}

		return dp[0][0];
	}
}
解法3

public class DistinctSubsequences {
	public int numDistinct(String S, String T) {
		int M = S.length();
		int N = T.length();
		if (N > M) {
			return 0;
		}

		int[] dp = new int[N + 1];
		// init
		dp[N] = 1;

		// dp
		for (int i = M - 1; i >= 0; --i) {
			for (int j = 0; j <= (i >= N - 1 ? N - 1 : i); ++j) {
				dp[j] = dp[j] + (S.charAt(i) == T.charAt(j) ? dp[j + 1] : 0);
			}
		}

		return dp[0];
	}
}

LeetCode | Distinct Subsequences,布布扣,bubuko.com

LeetCode | Distinct Subsequences

原文:http://blog.csdn.net/perfect8886/article/details/19938761

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!