题意:给n对炸弹可以放置的位置(每个位置为一个二维平面上的点),每次放置炸弹是时只能选择这一对中的其中一个点,每个炸弹爆炸的范围半径都一样,控制爆炸的半径使得所有的爆炸范围都不相交(可以相切),求解这个最大半径。
思路:二分答案,其中建图,用2-SAT判断方案是否可行。
代码:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <vector>
#include <cmath>
#include <algorithm>
using namespace std;
const int MAXN = 105;
const double eps = 1e-5;
struct TwoSAT{
int n;
vector<int> g[MAXN * 2];
bool mark[MAXN * 2];
int s[MAXN * 2], c;
bool dfs(int x) {
if (mark[x^1]) return false;
if (mark[x]) return true;
mark[x] = true;
s[c++] = x;
for (int i = 0; i < g[x].size(); i++)
if (!dfs(g[x][i])) return false;
return true;
}
void init(int n) {
this->n = n;
for (int i = 0; i < n * 2; i++)
g[i].clear();
memset(mark, 0, sizeof(mark));
}
void add_clause(int x, int xval, int y, int yval) {
x = x * 2 + xval;
y = y * 2 + yval;
g[x^1].push_back(y);
g[y^1].push_back(x);
}
bool solve() {
for (int i = 0; i < n * 2; i += 2)
if (!mark[i] && !mark[i + 1]) {
c = 0;
if (!dfs(i)) {
while (c > 0) mark[s[--c]] = false;
if (!dfs(i + 1)) return false;
}
}
return true;
}
};
TwoSAT solver;
struct Point{
double x, y;
}p[MAXN][2];
int n;
inline double dis(Point a, Point b) {
double dx = a.x - b.x;
double dy = a.y - b.y;
return sqrt(dx * dx + dy * dy);
}
inline bool xj(Point a, Point b, double r) {
if (dis(a, b) > 2 * r)
return false;
return true;
}
bool judge(double r) {
solver.init(n);
for (int i = 0; i < n; i++) {
for (int j = i + 1; j < n; j++) {
for (int x = 0; x < 2; x++) {
for (int y = 0; y < 2; y++) {
if (xj(p[i][x], p[j][y], r))
solver.add_clause(i, x, j, y);
}
}
}
}
return solver.solve();
}
int main() {
while (scanf("%d", &n) != EOF) {
for (int i = 0; i < n; i++)
for (int j = 0; j < 2; j++) {
scanf("%lf%lf", &p[i][j].x, &p[i][j].y);
}
double l = 0, r = 1e5;
while (r - l >= eps) {
double mid = (l + r) / 2;
if (judge(mid))
l = mid;
else
r = mid;
}
printf("%.2lf\n", l);
}
return 0;
}
原文:http://blog.csdn.net/u011345461/article/details/40986841