Follow up for "Unique Paths":
Now consider if some obstacles are added to the grids. How many unique paths would there be?
An obstacle and empty space is marked as 1 and
0 respectively in the grid.
For example,
There is one obstacle in the middle of a 3x3 grid as illustrated below.
[
[0,0,0],
[0,1,0],
[0,0,0]
]
The total number of unique paths is 2.
Note: m and n will be at most 100.
此题是前篇Unique Paths 的变形。加入了障碍格子。但是思路与前篇基本一致,只是在前篇的基础上考虑了障碍格子。变化的地方有两个:
int uniquePathsWithObstacles(vector<vector<int> > &obstacleGrid) { //c++
int m = obstacleGrid.size();
int n = obstacleGrid[0].size();
int array[m][n];
//init
bool haveObs = false;
for(int i = 0; i < n; i++){
if(obstacleGrid[0][i] == 0 && !haveObs){
array[0][i] = 1;
continue;
}
else if(obstacleGrid[0][i] == 1){
haveObs = true;
}
array[0][i] = 0;
}
haveObs = false;
for(int i = 0; i < m; i++) {
if(obstacleGrid[i][0] == 0 && !haveObs){
array[i][0] = 1;
continue;
}
else if(obstacleGrid[i][0 ==1]){
haveObs = true;
}
array[i][0] = 0;
}
for(int i = 1; i < m; i++)
for(int j = 1; j < n; j++){
array[i][j] = 0;
if(obstacleGrid[i][j] == 1)
continue;
if(obstacleGrid[i-1][j] == 0)
array[i][j] += array[i-1][j];
if(obstacleGrid[i][j-1] == 0)
array[i][j] +=array[i][j-1];
}
return array[m-1][n-1];
}
原文:http://blog.csdn.net/chenlei0630/article/details/40897285