首页 > 其他 > 详细

Triangle

时间:2014-11-06 17:16:35      阅读:258      评论:0      收藏:0      [点我收藏+]

Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below.

For example, given the following triangle

[
     [2],
    [3,4],
   [6,5,7],
  [4,1,8,3]
]

 

The minimum path sum from top to bottom is 11 (i.e., 2 + 3 + 5 + 1 = 11).

Note:
Bonus point if you are able to do this using only O(n) extra space, where n is the total number of rows in the triangle.

class Solution {
public:
    int minimumTotal(vector<vector<int> > &triangle) {
        if(triangle.size()==0)
            return 0;
        vector<int> f(triangle[triangle.size()-1].size());
        f[0]=triangle[0][0];
        for(int i=1;i<triangle.size();i++){
            for(int j=triangle[i].size()-1;j>=0;j--){
                if(j==0)
                    f[j]=f[j]+triangle[i][j];
                else if(j==triangle[i].size()-1)
                    f[j]=f[j-1]+triangle[i][j];
                else
                    f[j]=min(f[j],f[j-1])+triangle[i][j];
            }
        }
        int m=INT_MAX;
        for(int i=0;i<f.size();i++){
            m=min(m,f[i]);
        }
        return m;
    }
};

 

Triangle

原文:http://www.cnblogs.com/li303491/p/4078910.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!