Time Limit: 12000MS | Memory Limit: 65536K | |
Total Submissions: 2975 | Accepted: 1191 | |
Case Time Limit: 2000MS |
Description
A cellular automaton is a collection of cells on a grid of specified shape that evolves through a number of discrete time steps according to a set of rules that describe the new state of a cell based on the states of neighboring cells. Theorder of the cellular automaton is the number of cells it contains. Cells of the automaton of order n are numbered from 1 to n.
The order of the cell is the number of different values it may contain. Usually, values of a cell of order m are considered to be integer numbers from 0 to m ? 1.
One of the most fundamental properties of a cellular automaton is the type of grid on which it is computed. In this problem we examine the special kind of cellular automaton — circular cellular automaton of order n with cells of orderm. We will denote such kind of cellular automaton as n,m-automaton.
A distance between cells i and j in n,m-automaton is defined as min(|i ? j|, n ? |i ? j|). A d-environment of a cell is the set of cells at a distance not greater than d.
On each d-step values of all cells are simultaneously replaced by new values. The new value of cell i after d-step is computed as a sum of values of cells belonging to the d-enviroment of the cell i modulo m.
The following picture shows 1-step of the 5,3-automaton.
The problem is to calculate the state of the n,m-automaton after k d-steps.
Input
The first line of the input file contains four integer numbers n, m, d, and k (1 ≤ n ≤ 500, 1 ≤ m ≤ 1 000 000, 0 ≤ d < n?2 , 1 ≤ k ≤ 10 000 000). The second line contains n integer numbers from 0 to m ? 1 — initial values of the automaton’s cells.
Output
Output the values of the n,m-automaton’s cells after k d-steps.
Sample Input
sample input #1 5 3 1 1 1 2 2 1 2 sample input #2 5 3 1 10 1 2 2 1 2
Sample Output
sample output #1 2 2 2 2 1 sample output #2 2 0 0 2 2
Source
#include <iostream> #include <cstdlib> #include <cstring> #include <cstdio> #include <cmath> #include <algorithm> #define N 510 using namespace std; __int64 a[N][N],b[N],temp[N][N]; int n,m,d,k; int main() { //freopen("data.txt","r",stdin); void f(); while(scanf("%d",&n)!=EOF) { scanf("%d %d %d",&m,&d,&k); for(int i=0;i<=n-1;i++) { scanf("%I64d",&b[i]); } memset(a,0,sizeof(a)); for(int i=0;i<=n-1;i++) { for(int j=0;j<=d;j++) { int x = (i+j)%n; a[i][x] = 1; x = ((i-j)%n+n)%n; a[i][x] = true; } } f(); for(int i=0;i<=n-1;i++) { if(i==0) { printf("%I64d",b[i]); }else { printf(" %I64d",b[i]); } } printf("\n"); } return 0; } void ba() { for(int i=0;i<=n-1;i++) { __int64 sum = 0; for(int j=0;j<=n-1;j++) { sum=(sum+(b[j]*a[j][i])%m)%m; } temp[0][i] = sum; } for(int i=0;i<=n-1;i++) { b[i] = temp[0][i]; } } void aa() { for(int row=0;row<=0;row++) { for(int col=0;col<=n-1;col++) { __int64 sum = 0; for(int i=0;i<=n-1;i++) { sum=(sum+(a[row][i]*a[i][col])%m)%m; } temp[row][col] = sum; } } for(int i=0;i<=n-1;i++) { a[0][i] = temp[0][i]; } int pian = 1; for(int i=1;i<=n-1;i++) { for(int j=0;j<=n-1;j++) { int pos = (pian+j)%n; a[i][pos] = a[0][j]; } pian++; } } void f() { while(k>1) { if(k&1) { ba(); } aa(); k=k>>1; } ba(); }
原文:http://blog.csdn.net/yongxingao/article/details/19812827