首页 > 其他 > 详细

POJ 2533 Longest Ordered Subsequence

时间:2014-10-20 11:27:19      阅读:281      评论:0      收藏:0      [点我收藏+]

Longest Ordered Subsequence

Time Limit: 2000ms
Memory Limit: 65536KB
This problem will be judged on PKU. Original ID: 2533
64-bit integer IO format: %lld      Java class name: Main
 
A numeric sequence of ai is ordered if a1 < a2 < ... < aN. Let the subsequence of the given numeric sequence (a1a2, ..., aN) be any sequence (ai1ai2, ..., aiK), where 1 <= i1 < i2 < ... < iK <= N. For example, sequence (1, 7, 3, 5, 9, 4, 8) has ordered subsequences, e. g., (1, 7), (3, 4, 8) and many others. All longest ordered subsequences are of length 4, e. g., (1, 3, 5, 8).

Your program, when given the numeric sequence, must find the length of its longest ordered subsequence.
 

Input

The first line of input file contains the length of sequence N. The second line contains the elements of sequence - N integers in the range from 0 to 10000 each, separated by spaces. 1 <= N <= 1000
 

Output

Output file must contain a single integer - the length of the longest ordered subsequence of the given sequence.
 

Sample Input

7
1 7 3 5 9 4 8

Sample Output

4

Source

 
解题:LIS
 
bubuko.com,布布扣
 1 #include <iostream>
 2 #include <cstdio>
 3 #include <cstring>
 4 #include <cmath>
 5 #include <algorithm>
 6 #include <climits>
 7 #include <vector>
 8 #include <queue>
 9 #include <cstdlib>
10 #include <string>
11 #include <set>
12 #include <stack>
13 #define LL long long
14 #define pii pair<int,int>
15 #define INF 0x3f3f3f3f
16 using namespace std;
17 const int maxn = 1010;
18 int dp[maxn],d[maxn],n;
19 int main() {
20     while(~scanf("%d",&n)){
21         for(int i = 0; i < n; ++i){
22             scanf("%d",d+i);
23             dp[i] = INF;
24         }
25         dp[n] = INF;
26         for(int i = 0; i < n; ++i){
27             int *p = lower_bound(dp,dp+n+1,d[i]);
28             *p = d[i];
29         }
30         printf("%d\n",lower_bound(dp,dp+n+1,INF)-dp);
31     }
32     return 0;
33 }
View Code

 

POJ 2533 Longest Ordered Subsequence

原文:http://www.cnblogs.com/crackpotisback/p/4036610.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!