首页 > 其他 > 详细

LeetCode "Maximum Product Subarray"

时间:2014-10-11 08:31:36      阅读:222      评论:0      收藏:0      [点我收藏+]

Intuitively there must a O(n) solution.

First I tried a bottom-up DP solution but it had a TLE:

class Solution {
public:
    int maxProduct(int A[], int n) {
        vector<int> dp;dp.resize(n);
        dp.assign(A, A + n);

        int max = *std::max_element(A, A + n);
        for (size_t len = 2; len <= n; len ++)
        for (int i = 0; i <= n - len; i ++)
        {
            dp[i] *= A[i + len - 1];
            max = std::max(max, dp[i]);
        }

        return max;
    }
};

 So what is O(n) solution then? The idea is to keep track of 2 lines: one for positive and one for negative. Inspired by:

https://oj.leetcode.com/discuss/11923/sharing-my-solution-o-1-space-o-n-running-time

LeetCode "Maximum Product Subarray"

原文:http://www.cnblogs.com/tonix/p/3995924.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!