下面是一个关于如何使用长短期记忆网络(LSTM)来拟合一个不稳定的时间序列的例子。
每年的降雨量数据可能是相当不稳定的。与温度不同,温度通常在四季中表现出明显的趋势,而雨量作为一个时间序列可能是相当不稳定的。夏季的降雨量与冬季的降雨量一样多是很常见的。
下面是某地区2020年11月降雨量的图解。
作为一个连续的神经网络,LSTM模型可以证明在解释时间序列的波动性方面有优势。
使用Ljung-Box检验,小于0.05的p值表明这个时间序列中的残差表现出随机模式,表明有明显的波动性。
>>> sm.stats.acorr_ljungbox(res.resid, lags=[10])
该数据集由722个月的降雨量数据组成。
选择712个数据点用于训练和验证,即用于建立LSTM模型。然后,过去10个月的数据被用来作为测试数据,与LSTM模型的预测结果进行比较。
下面是数据集的一个片段。
然后形成一个数据集矩阵,将时间序列与过去的数值进行回归。
然后用MinMaxScaler对数据进行标准化处理。
将前一个参数设置为120,训练和验证数据集就建立起来了。作为参考,previous = 120说明模型使用从t - 120到t - 1的过去值来预测时间t的雨量值。
前一个参数的选择要经过试验,但选择120个时间段是为了确保识别到时间序列的波动性或极端值。
然后,输入被转换为样本、时间步骤、特征的格式。
该模型在100个历时中进行训练,并指定了712个批次的大小(等于训练和验证集中的数据点数量)。
下面是训练集与验证集的模型损失的关系图。
预测与实际降雨量的关系图也被生成。
预测结果在平均方向准确性(MDA)、平均平方根误差(RMSE)和平均预测误差(MFE)的基础上与验证集进行比较。
虽然验证集的结果相当可观,但只有将模型预测与测试(或未见过的)数据相比较,我们才能对LSTM模型的预测能力有合理的信心。
如前所述,过去10个月的降雨数据被用作测试集。然后,LSTM模型被用来预测未来10个月的情况,然后将预测结果与实际值进行比较。
至t-120的先前值被用来预测时间t的值。
获得的结果如下
过去10个月的平均降雨量为148.93毫米,预测精度显示出与验证集相似的性能,而且相对于整个测试集计算的平均降雨量而言,误差很低。
在这个例子中,你已经看到:
最受欢迎的见解
1.用于NLP的Python:使用Keras的多标签文本LSTM神经网络分类
2.Python中利用长短期记忆模型LSTM进行时间序列预测分析 – 预测电力消耗数据
4.Python中用PyTorch机器学习分类预测银行客户流失模型
6.在r语言中使用GAM(广义相加模型)进行电力负荷时间序列分析
7.R语言中ARMA,ARIMA(Box-Jenkins),SARIMA和ARIMAX模型用于预测时间序列数
拓端tecdat|Python用LSTM长短期记忆神经网络对不稳定降雨量时间序列进行预测分析
原文:https://www.cnblogs.com/tecdat/p/15196499.html