import pandas as pd
import requests
import json
PATH = ‘https://raw.githubusercontent.com/rmpbastos/data_sets/main/kaggle_housing/house_df.csv‘
df = pd.read_csv(PATH)
type(df) # pandas.core.frame.DataFrame
df.head() # head 5
df.tail() # tail 5
df.shape # (1460, 16)
df.info() # summary of df
df.describe() # 描述性统计
df[‘Neighborhood‘].value_counts() # count
# DataFrame index
df.set_index(‘Id‘, inplace=True)
df.index
df = pd.read_csv(PATH, index_col=‘Id‘) # second method
# rows and columns
df.columns
df[‘LotArea‘].head()
type(df[‘LotArea‘]) # pandas.core.series.Series
df.rename(columns={‘BedroomAbvGr‘: ‘Bedroom‘}, inplace=True) # rename columns
df_copy = df.copy() # copy dataframe
df_copy[‘Sold‘] = ‘N‘ # add column(s)
df_copy.tail()
data_to_append = {‘LotArea‘: [9500, 15000],
‘Steet‘: [‘Pave‘, ‘Gravel‘],
‘Neighborhood‘: [‘Downtown‘, ‘Downtown‘],
‘HouseStyle‘: [‘2Story‘, ‘1Story‘],
‘YearBuilt‘: [2021, 2019],
‘CentralAir‘: [‘Y‘, ‘N‘],
‘Bedroom‘: [5, 4],
‘Fireplaces‘: [1, 0],
‘GarageType‘: [‘Attchd‘, ‘Attchd‘],
‘GarageYrBlt‘: [2021, 2019],
‘GarageArea‘: [300, 250],
‘PoolArea‘: [0, 0],
‘PoolQC‘: [‘G‘, ‘G‘],
‘Fence‘: [‘G‘, ‘G‘],
‘SalePrice‘: [250000, 195000],
‘Sold‘: [‘Y‘, ‘Y‘]}
df_to_append = pd.DataFrame(data_to_append) # dict to dataframe
df_copy = df_copy.append(df_to_append, ignore_index=True) # add row(s)
df_copy.tail()
df_copy.drop(labels=1461, axis=0, inplace=True) # remove row(s) ; axis = 0
df_copy.drop(labels=‘Fence‘, axis=1, inplace=True) # remove column(s) ; axis = 1
# loc is used to access rows and columns by label/index or based on a boolean array
df.loc[1000] # the 1000th row; index = 1000
df.loc[1000, [‘LotArea‘, ‘SalePrice‘]] # index = 1000; columns = [‘LotArea‘, ‘SalePrice‘]
df.loc[df[‘SalePrice‘] >= 600000] # df[‘SalePrice‘] >= 600000 is condion; return boolen
# iloc is used to select data based on their integer location or based on a boolean array as well
df.iloc[0, 0] # 1st row; 1st column
df.iloc[10, :] # 10th column
df.iloc[:, -1] # the last colums
df.iloc[8:12, 2:5]
df.isnull() # detecting the missing values
df.isnull().sum() # the sum of missing values per column
df.isnull().sum() / df.shape[0] # ratio
# ratio > 0
for column in df.columns:
if df[column].isnull().sum() > 0:
print(column, ‘: {:.2%}‘.format(df[column].isnull().sum() / df[column].shape[0]))
df_toremove = df.copy() # copy to drop
df_toremove.drop(labels=[‘PoolQC‘], axis=1, inplace=True) # drop column(s)
df_toremove.dropna(subset=[‘GarageType‘], axis=0, inplace=True) # drop rows
df_tofill = df.copy() # copy to fill the null
df_tofill[‘Fence‘].fillna(value=‘NoFence‘, inplace=True) # fiil all in the column[‘Fence‘]
garage_median = df_tofill[‘GarageYrBlt‘].median() # fill the median
df_tofill.fillna({‘GarageYrBlt‘: garage_median}, inplace=True)
df[‘SalePrice‘].plot(kind=‘hist‘); # Histograms
df.plot(x=‘SalePrice‘, y=‘YearBuilt‘, kind=‘scatter‘) # scatter
df.to_csv(r‘./Python_经济知识综合/My_DataFrame.csv‘) # save by the relative path
df.to_csv(‘C:/Users/username/Documents/My_DataFrame.csv‘) # absolute path
原文:https://www.cnblogs.com/RankFan/p/15194187.html